Chào mừng bạn đến với lời giải chi tiết bài 5 trang 62 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hỗ trợ tối đa cho quá trình học tập của bạn.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA = a\sqrt 3 \). Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy.
Đề bài
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA = a\sqrt 3 \). Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy. Gọi \(\left( \alpha \right)\) là mặt phẳng qua AB và vuông góc với mặt phẳng (SCD).
a) Tìm các giao tuyến của mặt phẳng \(\left( \alpha \right)\) với các mặt của hình chóp.
b) Các giao tuyến ở câu a tạo thành hình gì? Tính diện tích của hình đó.
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về điều kiện để hai mặt phẳng vuông góc: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
+ Sử dụng kiến thức về tính chất cơ bản của hai mặt phẳng vuông góc: Nếu hai mặt phẳng vuông góc với nhau mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba.
Lời giải chi tiết

a) Vì mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy, SA là giao tuyến của hai mặt phẳng (SAB) và (SAD) nên \(SA \bot \left( {ABCD} \right)\)
Vì ABCD là hình vuông nên \(AD \bot DC\).
Mà \(SA \bot \left( {ABCD} \right),DC \subset \left( {ABCD} \right) \) \( \Rightarrow SA \bot DC\)
Do đó, \(DC \bot \left( {SAD} \right)\). Lại có: \(DC \subset \left( {SDC} \right) \) \( \Rightarrow \left( {SCD} \right) \bot \left( {SAD} \right)\)
Vẽ \(AM \bot SD\) tại M. Do đó, \(AM \bot \left( {SCD} \right)\). Suy ra, \(\left( {BAM} \right) \bot \left( {SCD} \right)\) hay (ABM) là mặt phẳng qua AB và vuông góc với mặt phẳng (SCD).
Trong mặt phẳng (SCD), kẻ MN//CD\(\left( {N \in SC} \right)\). Suy ra, MN//AB nên \(MN \subset \left( \alpha \right)\)
Khi đó, giao tuyến của \(\left( \alpha \right)\) với:
Mặt phẳng (ABCD) là AB.
Mặt phẳng (ABS) là AB.
Mặt phẳng (SBC) là NB.
Mặt phẳng (SCD) là MN.
Mặt phẳng (ASD) là AM.
b) Ta có: MN//AB, \(AB \bot AM\left( {do\;AB \bot \left( {SAD} \right)} \right)\) nên tứ giác ABNM là hình thang vuông tại A và M.
Tam giác SAD vuông tại A có AM là đường cao nên
\(\frac{1}{{A{M^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{3{a^2}}} + \frac{1}{{{a^2}}} = \frac{4}{{3{a^2}}} \) \( \Rightarrow AM = \frac{{a\sqrt 3 }}{2}\)
Vì MN//CD nên \(\frac{{MN}}{{CD}} = \frac{{SM}}{{SD}} \) \( \Rightarrow \frac{{MN}}{{CD}} = \frac{{\frac{{S{A^2}}}{{SD}}}}{{SD}} = \frac{{S{A^2}}}{{S{D^2}}} = \frac{{S{A^2}}}{{S{A^2} + A{D^2}}} = \frac{{3{a^2}}}{{4{a^2}}} = \frac{3}{4}\)
Do đó, \(MN = \frac{3}{4}CD = \frac{3}{4}a\)
Vậy diện tích hình thang ABNM là: \(S = \frac{1}{2}AM\left( {MN + AB} \right) \) \(= \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.\left( {\frac{3}{4}a + a} \right) = \frac{{7{a^2}\sqrt 3 }}{{16}}\)
Bài 5 trang 62 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, và các phép toán trên hàm số (tổng, hiệu, tích, thương).
Để giải quyết bài 5 trang 62 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 5 trang 62 Sách bài tập Toán 11 Chân trời sáng tạo tập 2:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 5x - 2
Lời giải:
f'(x) = d/dx (3x2) + d/dx (5x) - d/dx (2)
f'(x) = 6x + 5 - 0
f'(x) = 6x + 5
Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x)
Lời giải:
g'(x) = d/dx (sin(x)) + d/dx (cos(x))
g'(x) = cos(x) - sin(x)
Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1) / (x - 1)
Lời giải:
Áp dụng quy tắc đạo hàm của thương:
h'(x) = [(x2 + 1)'(x - 1) - (x2 + 1)(x - 1)'] / (x - 1)2
h'(x) = [2x(x - 1) - (x2 + 1)(1)] / (x - 1)2
h'(x) = (2x2 - 2x - x2 - 1) / (x - 1)2
h'(x) = (x2 - 2x - 1) / (x - 1)2
Để giải nhanh các bài tập về đạo hàm, bạn nên:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, bạn đã hiểu rõ cách giải bài 5 trang 62 Sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập