Chào mừng bạn đến với tusach.vn! Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 22 trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi hy vọng sẽ giúp bạn hiểu rõ hơn về kiến thức và kỹ năng cần thiết để giải quyết các bài toán trong chương trình học.
Với đội ngũ giáo viên giàu kinh nghiệm, tusach.vn cam kết mang đến cho bạn những giải pháp học tập hiệu quả nhất.
Giải các bất phương trình sau:
Đề bài
Giải các bất phương trình sau:
a) \({4^x} < 2\sqrt 2 \);
b) \({\left( {\frac{1}{{\sqrt 3 }}} \right)^{x - 1}} \ge \frac{1}{9}\);
c) \(5.{\left( {\frac{1}{2}} \right)^x} < 40\);
d) \({4^{2x}} < {8^{x - 1}}\);
e) \({\left( {\frac{1}{5}} \right)^{2 - x}} \le {\left( {\frac{1}{{25}}} \right)^x}\);
g) \(0,{25^{x - 2}} > 0,{5^{x + 1}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giải bất phương trình chứa mũ để giải bất phương trình:
Bảng tổng kết về nghiệm của các bất phương trình:
Bất phương trình | \(b \le 0\) | \(b > 0\) | |
\(a > 1\) | \(0 < a < 1\) | ||
\({a^x} > b\) | \(\forall x \in \mathbb{R}\) | \(x > {\log _a}b\) | \(x < {\log _a}b\) |
\({a^x} \ge b\) | \(x \ge {\log _a}b\) | \(x \le {\log _a}b\) | |
\({a^x} < b\) | Vô nghiệm | \(x < {\log _a}b\) | \(x > {\log _a}b\) |
\({a^x} \le b\) | \(x \le {\log _a}b\) | \(x \ge {\log _a}b\) | |
Chú ý:
+ Nếu \(a > 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) > v\left( x \right)\)
+ Nếu \(0 < a < 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) < v\left( x \right)\)
Lời giải chi tiết
a) \({4^x} < 2\sqrt 2 \) \( \Leftrightarrow {\left( {\sqrt 2 } \right)^{4x}} < {\left( {\sqrt 2 } \right)^3} \) \( \Leftrightarrow 4x < 3\left( {do\;\sqrt 2 > 1} \right) \) \( \Leftrightarrow x < \frac{3}{4}\)
Vậy bất phương trình có nghiệm \(x < \frac{3}{4}\).
b) \({\left( {\frac{1}{{\sqrt 3 }}} \right)^{x - 1}} \ge \frac{1}{9} \) \( \Leftrightarrow {\left( {\frac{1}{3}} \right)^{\frac{{x - 1}}{2}}} \ge {\left( {\frac{1}{3}} \right)^2} \) \( \Leftrightarrow \frac{{x - 1}}{2} \le 2\left( {do\,0 < \frac{1}{3} < 1} \right) \) \( \Leftrightarrow x - 1 \le 4 \) \( \Leftrightarrow x \le 5\)
Vậy bất phương trình có nghiệm \(x \le 5\).
c) \(5.{\left( {\frac{1}{2}} \right)^x} < 40 \) \( \Leftrightarrow {\left( {\frac{1}{2}} \right)^x} < 8 \) \( \Leftrightarrow {2^{ - x}} < {2^3} \) \( \Leftrightarrow - x < 3\left( {do\;2 > 1} \right) \) \( \Leftrightarrow x > - 3\)
Vậy bất phương trình có nghiệm \(x > - 3\).
d) \({4^{2x}} < {8^{x - 1}} \) \( \Leftrightarrow {2^{4x}} < {2^{3\left( {x - 1} \right)}} \) \( \Leftrightarrow 4x < 3x - 3\left( {do\;2 > 1} \right) \) \( \Leftrightarrow x < - 3\)
Vậy bất phương trình có nghiệm \(x < - 3\).
e) \({\left( {\frac{1}{5}} \right)^{2 - x}} \le {\left( {\frac{1}{{25}}} \right)^x} \) \( \Leftrightarrow {5^{x - 2}} \le {5^{ - 2x}} \) \( \Leftrightarrow x - 2 \le - 2x\left( {do\;5 > 1} \right) \) \( \Leftrightarrow 3x \le 2 \) \( \Leftrightarrow x \le \frac{2}{3}\)
Vậy bất phương trình có nghiệm \(x \le \frac{2}{3}\).
g) \(0,{25^{x - 2}} > 0,{5^{x + 1}} \) \( \Leftrightarrow 0,{5^{2x - 4}} > 0,{5^{x + 1}} \) \( \Leftrightarrow 2x - 4 < x + 1\left( {do\;0,5 < 1} \right) \) \( \Leftrightarrow x < 5\)
Vậy bất phương trình có nghiệm \(x < 5\).
Bài 3 trang 22 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho việc giải các bài tập trong sách bài tập mà còn là nền tảng cho các kiến thức toán học nâng cao hơn.
Bài 3 thường yêu cầu học sinh:
Để giúp bạn hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 3:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1
Lời giải:
f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)
f'(x) = 6x + 2 - 0
f'(x) = 6x + 2
Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1) / (x - 1)
Lời giải:
g'(x) = [(x2 + 1)'(x - 1) - (x2 + 1)(x - 1)'] / (x - 1)2
g'(x) = [2x(x - 1) - (x2 + 1)(1)] / (x - 1)2
g'(x) = (2x2 - 2x - x2 - 1) / (x - 1)2
g'(x) = (x2 - 2x - 1) / (x - 1)2
tusach.vn là địa chỉ tin cậy cho học sinh, sinh viên và những người yêu thích môn Toán. Chúng tôi cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập