1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 3 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 3 trang 22 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với tusach.vn! Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 22 trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi hy vọng sẽ giúp bạn hiểu rõ hơn về kiến thức và kỹ năng cần thiết để giải quyết các bài toán trong chương trình học.

Với đội ngũ giáo viên giàu kinh nghiệm, tusach.vn cam kết mang đến cho bạn những giải pháp học tập hiệu quả nhất.

Giải các bất phương trình sau:

Đề bài

Giải các bất phương trình sau:

a) \({4^x} < 2\sqrt 2 \);

b) \({\left( {\frac{1}{{\sqrt 3 }}} \right)^{x - 1}} \ge \frac{1}{9}\);

c) \(5.{\left( {\frac{1}{2}} \right)^x} < 40\);

d) \({4^{2x}} < {8^{x - 1}}\);

e) \({\left( {\frac{1}{5}} \right)^{2 - x}} \le {\left( {\frac{1}{{25}}} \right)^x}\);

g) \(0,{25^{x - 2}} > 0,{5^{x + 1}}\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về giải bất phương trình chứa mũ để giải bất phương trình:

Bảng tổng kết về nghiệm của các bất phương trình:

Bất phương trình

\(b \le 0\)

\(b > 0\)

\(a > 1\)

\(0 < a < 1\)

\({a^x} > b\)

\(\forall x \in \mathbb{R}\)

\(x > {\log _a}b\)

\(x < {\log _a}b\)

\({a^x} \ge b\)

\(x \ge {\log _a}b\)

\(x \le {\log _a}b\)

\({a^x} < b\)

Vô nghiệm

\(x < {\log _a}b\)

\(x > {\log _a}b\)

\({a^x} \le b\)

\(x \le {\log _a}b\)

\(x \ge {\log _a}b\)

Chú ý:

+ Nếu \(a > 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) > v\left( x \right)\)

+ Nếu \(0 < a < 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) < v\left( x \right)\)

Lời giải chi tiết

a) \({4^x} < 2\sqrt 2 \) \( \Leftrightarrow {\left( {\sqrt 2 } \right)^{4x}} < {\left( {\sqrt 2 } \right)^3} \) \( \Leftrightarrow 4x < 3\left( {do\;\sqrt 2 > 1} \right) \) \( \Leftrightarrow x < \frac{3}{4}\)

Vậy bất phương trình có nghiệm \(x < \frac{3}{4}\).

b) \({\left( {\frac{1}{{\sqrt 3 }}} \right)^{x - 1}} \ge \frac{1}{9} \) \( \Leftrightarrow {\left( {\frac{1}{3}} \right)^{\frac{{x - 1}}{2}}} \ge {\left( {\frac{1}{3}} \right)^2} \) \( \Leftrightarrow \frac{{x - 1}}{2} \le 2\left( {do\,0 < \frac{1}{3} < 1} \right) \) \( \Leftrightarrow x - 1 \le 4 \) \( \Leftrightarrow x \le 5\)

Vậy bất phương trình có nghiệm \(x \le 5\).

c) \(5.{\left( {\frac{1}{2}} \right)^x} < 40 \) \( \Leftrightarrow {\left( {\frac{1}{2}} \right)^x} < 8 \) \( \Leftrightarrow {2^{ - x}} < {2^3} \) \( \Leftrightarrow - x < 3\left( {do\;2 > 1} \right) \) \( \Leftrightarrow x > - 3\)

Vậy bất phương trình có nghiệm \(x > - 3\).

d) \({4^{2x}} < {8^{x - 1}} \) \( \Leftrightarrow {2^{4x}} < {2^{3\left( {x - 1} \right)}} \) \( \Leftrightarrow 4x < 3x - 3\left( {do\;2 > 1} \right) \) \( \Leftrightarrow x < - 3\)

Vậy bất phương trình có nghiệm \(x < - 3\).

e) \({\left( {\frac{1}{5}} \right)^{2 - x}} \le {\left( {\frac{1}{{25}}} \right)^x} \) \( \Leftrightarrow {5^{x - 2}} \le {5^{ - 2x}} \) \( \Leftrightarrow x - 2 \le - 2x\left( {do\;5 > 1} \right) \) \( \Leftrightarrow 3x \le 2 \) \( \Leftrightarrow x \le \frac{2}{3}\)

Vậy bất phương trình có nghiệm \(x \le \frac{2}{3}\).

g) \(0,{25^{x - 2}} > 0,{5^{x + 1}} \) \( \Leftrightarrow 0,{5^{2x - 4}} > 0,{5^{x + 1}} \) \( \Leftrightarrow 2x - 4 < x + 1\left( {do\;0,5 < 1} \right) \) \( \Leftrightarrow x < 5\)

Vậy bất phương trình có nghiệm \(x < 5\).

Giải bài 3 trang 22 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan và Hướng dẫn chi tiết

Bài 3 trang 22 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho việc giải các bài tập trong sách bài tập mà còn là nền tảng cho các kiến thức toán học nâng cao hơn.

Nội dung chính của bài 3 trang 22

Bài 3 thường yêu cầu học sinh:

  • Tính đạo hàm của các hàm số đơn giản sử dụng các quy tắc đạo hàm cơ bản (đạo hàm của tổng, hiệu, tích, thương, hàm hợp).
  • Áp dụng đạo hàm để tìm tiếp tuyến của đồ thị hàm số tại một điểm cho trước.
  • Giải các bài toán liên quan đến vận tốc, gia tốc khi biết hàm vị trí.

Lời giải chi tiết bài 3 trang 22 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Để giúp bạn hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài 3:

Câu a:

Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1

Lời giải:

f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)

f'(x) = 6x + 2 - 0

f'(x) = 6x + 2

Câu b:

Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1) / (x - 1)

Lời giải:

g'(x) = [(x2 + 1)'(x - 1) - (x2 + 1)(x - 1)'] / (x - 1)2

g'(x) = [2x(x - 1) - (x2 + 1)(1)] / (x - 1)2

g'(x) = (2x2 - 2x - x2 - 1) / (x - 1)2

g'(x) = (x2 - 2x - 1) / (x - 1)2

Mẹo giải bài tập đạo hàm hiệu quả

  1. Nắm vững các quy tắc đạo hàm cơ bản: Đây là nền tảng để giải quyết mọi bài toán về đạo hàm.
  2. Phân tích đề bài cẩn thận: Xác định rõ hàm số cần tính đạo hàm và các điều kiện cho trước.
  3. Sử dụng các công thức đạo hàm một cách linh hoạt: Áp dụng các công thức phù hợp với từng dạng bài tập.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả tính toán là chính xác.

Tại sao nên chọn tusach.vn để học Toán 11?

tusach.vn là địa chỉ tin cậy cho học sinh, sinh viên và những người yêu thích môn Toán. Chúng tôi cung cấp:

  • Lời giải chi tiết, dễ hiểu: Được trình bày bởi đội ngũ giáo viên giàu kinh nghiệm.
  • Nội dung được cập nhật thường xuyên: Đảm bảo tính chính xác và phù hợp với chương trình học mới nhất.
  • Giao diện thân thiện, dễ sử dụng: Giúp bạn dễ dàng tìm kiếm và học tập.
  • Hỗ trợ trực tuyến 24/7: Giải đáp mọi thắc mắc của bạn một cách nhanh chóng và hiệu quả.

Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN