1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 8 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 8 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 8 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác nhất cho bài tập 8 trang 45 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.

Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết bài toán này một cách hiệu quả.

Cho hàm số \(f\left( x \right) = \sqrt {{x^2} - 2x + 8} \). Giải phương trình \(f'\left( x \right) = - \frac{2}{3}\).

Đề bài

Cho hàm số \(f\left( x \right) = \sqrt {{x^2} - 2x + 8} \). Giải phương trình \(f'\left( x \right) = - \frac{2}{3}\).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về các quy tắc tính đạo hàm để tính: \(\left( {\sqrt {u\left( x \right)} } \right)' = \frac{{u'\left( x \right)}}{{2\sqrt {u\left( x \right)} }},\)\(\left( {{x^\alpha }} \right)' = \alpha .{x^{\alpha - 1}}\left( {x > 0} \right),c' = 0\) với c là hằng số. 

Lời giải chi tiết

\(f'\left( x \right) \) \( = {\left( {\sqrt {{x^2} - 2x + 8} } \right)'} \) \( = \frac{{\left( {{x^2} - 2x + 8} \right)'}}{{2\sqrt {{x^2} - 2x + 8} }} \) \( = \frac{{2x - 2}}{{2\sqrt {{x^2} - 2x + 8} }} \) \( = \frac{{x - 1}}{{\sqrt {{x^2} - 2x + 8} }}\)

\(f'\left( x \right) = - \frac{2}{3}\) thì \(\frac{{x - 1}}{{\sqrt {{x^2} - 2x + 8} }} = - \frac{2}{3} \) \( \Leftrightarrow \frac{{x - 1}}{{\sqrt {{x^2} - 2x + 8} }} + \frac{2}{3} = 0\)

\( \Leftrightarrow \frac{{3\left( {x - 1} \right) + 2\sqrt {{x^2} - 2x + 8} }}{{3\sqrt {{x^2} - 2x + 8} }} = 0 \) \( \Leftrightarrow 3\left( {x - 1} \right) + 2\sqrt {{x^2} - 2x + 8} = 0\)

\( \Leftrightarrow 2\sqrt {{x^2} - 2x + 8} = - 3\left( {x - 1} \right) \) \( \Leftrightarrow \left\{ \begin{array}{l}x < 1\\4\left( {{x^2} - 2x + 8} \right) = 9{\left( {x - 1} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x < 1\\4{x^2} - 8x + 32 = 9{x^2} - 18x + 9\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x < 1\\5{x^2} - 10x - 23 = 0\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}x < 1\\\left[ \begin{array}{l}x = \frac{{5 + 2\sqrt {35} }}{5}\\x = \frac{{5 - 2\sqrt {35} }}{5}\end{array} \right.\end{array} \right.\)\( \Leftrightarrow x = \frac{{5 - 2\sqrt {35} }}{5}\)

Vậy \(x = \frac{{5 - 2\sqrt {35} }}{5}\)

Giải bài 8 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 8 trang 45 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản, đặc biệt là đạo hàm của tổng, hiệu, tích, thương của các hàm số, cũng như đạo hàm của hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán đạo hàm phức tạp hơn trong chương trình học.

Nội dung bài tập 8 trang 45

Bài tập 8 thường bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước, có thể là hàm số đơn giản hoặc hàm số phức tạp được xây dựng từ các hàm số cơ bản.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm cấp nhất.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Một số bài tập có thể yêu cầu sử dụng đạo hàm để tìm điểm cực trị, khoảng đơn điệu của hàm số, hoặc giải quyết các bài toán liên quan đến vận tốc, gia tốc.

Lời giải chi tiết bài 8 trang 45

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lời giải sẽ bao gồm các bước thực hiện, giải thích rõ ràng và các lưu ý quan trọng.

Ví dụ (giả định):

Cho hàm số f(x) = x3 + 2x2 - 5x + 1. Tính f'(x).

Lời giải:

Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:

f'(x) = 3x2 + 4x - 5

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  1. Nắm vững các quy tắc tính đạo hàm cơ bản: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit,...
  2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  3. Sử dụng các công cụ hỗ trợ: Các công cụ tính đạo hàm trực tuyến có thể giúp bạn kiểm tra lại kết quả và hiểu rõ hơn về quá trình tính toán.
  4. Phân tích kỹ đề bài: Xác định rõ yêu cầu của đề bài và lựa chọn phương pháp giải phù hợp.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán trực tuyến: Khan Academy, VietJack,...
  • Các video hướng dẫn giải toán: YouTube,...
  • Các diễn đàn học tập: Hỏi đáp về toán học,...

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 8 trang 45 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 một cách hiệu quả. Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN