1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 2 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 2 trang 158 sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu bài 2 trang 158 SBT Toán 11 Chân trời sáng tạo tập 1. Bài giải được các thầy cô giáo có kinh nghiệm biên soạn, đảm bảo tính chính xác và giúp học sinh nắm vững kiến thức.

Chúng tôi luôn cập nhật nhanh chóng và đầy đủ lời giải các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 1, giúp các em học sinh ôn tập và làm bài tập hiệu quả.

Người ta thống kê tốc độ của một số xe ô tô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau: Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Đề bài

Người ta thống kê tốc độ của một số xe ô tô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau:

Giải bài 2 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Hãy ước lượng các tứ phân vị của mẫu số liệu ghép nhóm trên.

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 158 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:

Gọi n là cỡ mẫu

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,

\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)

Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.

Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)

Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)

Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)

Lời giải chi tiết

Cỡ mẫu \(n = 78\)

Gọi \({x_1},{x_2},...,{x_{78}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_5} \in \left[ {75;80} \right),{x_6},...,{x_{17}} \in \left[ {80;85} \right),{x_{18}},...,{x_{35}} \in \left[ {85;90} \right),{x_{36}},...,{x_{59}} \in \left[ {90;95} \right),\)

\({x_{60}},...,{x_{78}} \in \left[ {95;100} \right)\).

Do cỡ mẫu \(n = 78\) nên tứ phân vị thứ hai của mẫu số liệu là \(\frac{1}{2}\left( {{x_{39}} + {x_{40}}} \right)\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {90;95} \right)\).

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là:

\({Q_2} = 90 + \frac{{\frac{{78}}{2} - \left( {5 + 12 + 18} \right)}}{{24}}.\left( {95 - 90} \right) = \frac{{545}}{6}\)

Do cỡ mẫu \(n = 78\) nên tứ phân vị thứ nhất của mẫu số liệu là \({x_{20}}\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {85;90} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 85 + \frac{{\frac{{78}}{4} - \left( {5 + 12} \right)}}{{18}}.\left( {90 - 85} \right) = \frac{{3085}}{{36}}\)

Do cỡ mẫu \(n = 78\) nên tứ phân vị thứ ba của mẫu số liệu là \({x_{59}}\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {90;95} \right)\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 90 + \frac{{\frac{{3.78}}{4} - \left( {5 + 12 + 18} \right)}}{{24}}.\left( {95 - 90} \right) = \frac{{4\;555}}{{48}}\)

Giải bài 2 trang 158 sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan và Phương pháp giải

Bài 2 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học kỳ 1, tập trung vào việc vận dụng các kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh xác định mối quan hệ giữa đường thẳng và mặt phẳng, tính góc giữa chúng, hoặc chứng minh tính song song, vuông góc.

Nội dung chi tiết bài 2 trang 158

Để giải quyết bài 2 trang 158 một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa về đường thẳng song song với mặt phẳng: Một đường thẳng được gọi là song song với một mặt phẳng nếu nó không có điểm chung với mặt phẳng đó.
  • Định lý về đường thẳng song song với mặt phẳng: Nếu một đường thẳng không nằm trong mặt phẳng và không có điểm chung với mặt phẳng đó thì đường thẳng đó song song với mặt phẳng.
  • Định nghĩa về góc giữa đường thẳng và mặt phẳng: Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng đó và hình chiếu của nó trên mặt phẳng.
  • Công thức tính góc giữa đường thẳng và mặt phẳng: Sử dụng các định lý lượng giác và các công thức liên quan đến vectơ để tính góc.

Lời giải chi tiết bài 2 trang 158 (Ví dụ)

Đề bài: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).

Lời giải:

  1. Xác định hình chiếu của SC lên mặt phẳng (ABCD): Gọi H là hình chiếu của S lên mặt phẳng (ABCD). Vì SA vuông góc với (ABCD) nên H trùng với A. Do đó, AC là hình chiếu của SC lên mặt phẳng (ABCD).
  2. Tính độ dài AC: Vì ABCD là hình vuông cạnh a nên AC = a√2.
  3. Tính SC: Áp dụng định lý Pitago trong tam giác vuông SAC, ta có SC = √(SA² + AC²) = √(a² + (a√2)²) = a√3.
  4. Tính góc giữa SC và mặt phẳng (ABCD): Góc giữa SC và mặt phẳng (ABCD) chính là góc SCA. Ta có sin(SCA) = SA/SC = a/(a√3) = 1/√3. Suy ra SCA = arcsin(1/√3) ≈ 35.26°.

Mẹo giải bài tập về đường thẳng và mặt phẳng

  • Vẽ hình: Vẽ hình chính xác và rõ ràng là bước quan trọng nhất để giải quyết các bài tập về hình học không gian.
  • Xác định các yếu tố quan trọng: Xác định các đường thẳng, mặt phẳng, góc, và các yếu tố liên quan khác.
  • Sử dụng các định lý và công thức: Áp dụng các định lý và công thức đã học để giải quyết bài tập.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để học tốt môn Toán 11, các em có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 11 - Chân trời sáng tạo tập 1
  • Sách bài tập Toán 11 - Chân trời sáng tạo tập 1
  • Các trang web học Toán trực tuyến uy tín như tusach.vn

Kết luận

Bài 2 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về đường thẳng và mặt phẳng trong không gian. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em sẽ tự tin hơn khi làm bài tập Toán 11.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN