Bài 7 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân.
tusach.vn xin giới thiệu đáp án chi tiết và cách giải bài tập này, giúp các em học sinh hiểu rõ kiến thức và tự tin làm bài tập.
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}\).
Đề bài
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}\).
Phương pháp giải - Xem chi tiết
* Sử dụng kiến thức về dãy số tăng, giảm để xét tính tăng giảm của dãy số: Cho dãy số \(\left( {{u_n}} \right)\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số tăng nếu \({u_{n + 1}} > {u_n},\forall n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số giảm nếu \({u_{n + 1}} < {u_n},\forall n \in \mathbb{N}*\).
* Sử dụng kiến thức về dãy bị chặn để xét tính bị chặn của dãy số:
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn trên nếu tồn tại một số M sao cho \({u_n} \le M,\forall n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn dưới nếu tồn tại một số m sao cho \({u_n} \ge m,\forall n \in \mathbb{N}*\).
+ Dãy số \(\left( {{u_n}} \right)\) được gọi là dãy số bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, nghĩa là tồn tại các số M và m sao cho \(m \le {u_n} \le M,\forall n \in \mathbb{N}*\).
Lời giải chi tiết
Ta có: \({u_{n + 1}} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}} + \frac{1}{{{{\left( {n + 1} \right)}^2}}}\)
Ta có:
\({u_{n + 1}} - {u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}} + \frac{1}{{{{\left( {n + 1} \right)}^2}}} - \left( {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}} \right)\)\( = \frac{1}{{{{\left( {n + 1} \right)}^2}}} > 0\forall n \in \mathbb{N}*\)
Suy ra, \({u_{n + 1}} > {u_n}\)\(\forall n \in \mathbb{N}*\). Suy ra, dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
Do \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}} < 1 + \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{\left( {n - 1} \right)n}}\)
\( \Rightarrow {u_n} < 1 + 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ... + \frac{1}{{n - 1}} - \frac{1}{n} = 2 - \frac{1}{n}\)
Do đó, \(1 < {u_n} < 2\forall n \in \mathbb{N}*\)
Suy ra, \(\left( {{u_n}} \right)\) là dãy số bị chặn.
Bài 7 trang 58 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về dãy số, cấp số cộng và cấp số nhân. Bài tập này yêu cầu học sinh vận dụng các công thức và kiến thức đã học để giải quyết các bài toán thực tế liên quan đến dãy số.
Bài 7 thường bao gồm các dạng bài tập sau:
Dưới đây là đáp án chi tiết và cách giải bài 7 trang 58 SBT Toán 11 Chân trời sáng tạo tập 1:
Cho dãy số (un) với u1 = 2 và un+1 = 2un + 1. Tính u5.
Giải:
Vậy u5 = 47.
Cho cấp số cộng (an) với a1 = 3 và d = 2. Tính tổng của 10 số hạng đầu tiên của cấp số cộng.
Giải:
S10 = (10/2) * [2a1 + (10-1)d] = 5 * [2(3) + 9(2)] = 5 * [6 + 18] = 5 * 24 = 120
Vậy S10 = 120.
Để giải tốt các bài tập về dãy số, cấp số cộng và cấp số nhân, bạn nên:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 7 trang 58 SBT Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về dãy số, cấp số cộng và cấp số nhân. Hy vọng với đáp án chi tiết và cách giải mà tusach.vn cung cấp, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập