1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 8 trang 85 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 8 trang 85 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 8 trang 85 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác nhất cho bài tập 8 trang 85 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.

Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết bài toán này một cách hiệu quả.

Mỗi giới hạn sau có tồn tại không? Nếu có, hãy tìm giới hạn đó. a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left| x \right|}}\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\).

Đề bài

Mỗi giới hạn sau có tồn tại không? Nếu có, hãy tìm giới hạn đó.

a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left| x \right|}}\);

b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 85 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về giới hạn một phía để tính:

+ Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\)

+ Nếu \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) \ne \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)\).

Lời giải chi tiết

a) Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2}}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {0^ + }} x = 0\); \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2}}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2}}}{{ - x}} = \mathop {\lim }\limits_{x \to {0^ - }} \left( { - x} \right) = 0\)

Vì \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2}}}{{\left| x \right|}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2}}}{{\left| x \right|}} = 0\) nên \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left| x \right|}} = 0\);

b) Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{x\left( {x - 2} \right)}}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^ - }} \left( { - x} \right) = - 2\);

\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}} = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x\left( {x - 2} \right)}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} x = 2\)

Vì \(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}} \ne \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 2x}}{{\left| {x - 2} \right|}}\).

Giải bài 8 trang 85 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 8 trang 85 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể.

Nội dung bài tập 8 trang 85

Bài tập 8 thường bao gồm các dạng bài sau:

  • Xác định các yếu tố của hàm số lượng giác: Tìm tập xác định, tập giá trị, chu kỳ, biên độ, pha, và các điểm đặc biệt của đồ thị hàm số.
  • Vẽ đồ thị hàm số lượng giác: Sử dụng các kiến thức về biến đổi đồ thị để vẽ đồ thị của hàm số lượng giác đã cho.
  • Giải phương trình lượng giác: Sử dụng các công thức lượng giác và các phương pháp giải phương trình để tìm nghiệm của phương trình lượng giác.
  • Ứng dụng hàm số lượng giác vào thực tế: Giải các bài toán thực tế liên quan đến hàm số lượng giác, ví dụ như bài toán về dao động điều hòa.

Lời giải chi tiết bài 8 trang 85

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng phần của bài tập 8 trang 85 sách bài tập Toán 11 Chân trời sáng tạo tập 1.

Ví dụ minh họa (Giả định bài tập cụ thể):

Bài tập: Cho hàm số y = 2sin(2x - π/3). Tìm tập xác định, tập giá trị, chu kỳ và vẽ đồ thị hàm số.

Lời giải:

  1. Tập xác định: Hàm số xác định với mọi x ∈ ℝ.
  2. Tập giá trị: [-2, 2].
  3. Chu kỳ: T = π.
  4. Biến đổi đồ thị:
    • Biên độ: A = 2.
    • Pha: φ = -π/3.
    • Độ dịch pha: -φ/2 = π/6.
  5. Vẽ đồ thị: Dựa vào các yếu tố trên, ta có thể vẽ đồ thị hàm số y = 2sin(2x - π/3).

Mẹo giải bài tập hàm số lượng giác

Để giải tốt các bài tập về hàm số lượng giác, bạn nên:

  • Nắm vững các công thức lượng giác cơ bản.
  • Hiểu rõ các tính chất của hàm số lượng giác.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán trực tuyến.
  • Các video hướng dẫn giải bài tập toán.
  • Các diễn đàn trao đổi kiến thức toán học.

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài tập 8 trang 85 sách bài tập Toán 11 Chân trời sáng tạo tập 1 một cách hiệu quả. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN