1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 4 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 73 sách bài tập Toán 11 Chân trời sáng tạo tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Tam giác ABC vuông tại A, \(\widehat {ABC} \) \( = {30^0}\), \(AC \) \( = a,SA \) \( = \frac{{a\sqrt 3 }}{2}\).

Đề bài

Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Tam giác ABC vuông tại A, \(\widehat {ABC} \) \( = {30^0}\), \(AC \) \( = a,SA \) \( = \frac{{a\sqrt 3 }}{2}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về góc nhị diện: Cho hai nửa mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\) có chung bờ là đường thẳng d. Hình tạo bởi \(\left( {{P_1}} \right)\), \(\left( {{Q_1}} \right)\) và d được gọi là góc nhị diện tạo bởi \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\), kí hiệu \(\left[ {{P_1},d,{Q_1}} \right]\).

+ Sử dụng kiến thức về góc phẳng nhị diện để tính: Góc phẳng nhị diện của góc nhị diện có đỉnh nằm trên cạnh của nhị diện, có hai cạnh lần lượt nằm trên hai mặt của nhị diện và vuông góc với cạnh của nhị diện.

Lời giải chi tiết

Giải bài 4 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

Vẽ \(AH \bot BC\left( {H \in BC} \right)\).

Vì \(SA \bot \left( {ABC} \right) \) \( \Rightarrow SA \bot BC\), mà \(AH \bot BC\) nên \(BC \bot \left( {SHA} \right)\)

Do đó, \(SH \bot BC\) nên góc SHA là góc phẳng nhị diện \(\left[ {S,BC,A} \right]\)

Tam giác AHC vuông tại C nên \(AH \) \( = AC.\sin \widehat {ACB} \) \( = a.\sin {60^0} \) \( = \frac{{a\sqrt 3 }}{2}\)

Vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot AH \) \( \Rightarrow \widehat {SAH} \) \( = {90^0}\), mà \(AH \) \( = SA\left( { = \frac{{a\sqrt 3 }}{2}} \right)\) nên tam giác SAH vuông cân tại A. Do đó, \(\widehat {SHA} \) \( = {45^0}\)

Giải bài 4 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2: Tổng quan và hướng dẫn

Bài 4 trang 73 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và thực hành thường xuyên là chìa khóa để giải quyết thành công bài tập này.

Nội dung bài 4 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2

Bài 4 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Sử dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, và các bài toán thực tế.

Đáp án chi tiết bài 4 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2

Dưới đây là đáp án chi tiết cho từng phần của bài 4 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2:

Câu a)

Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1

Giải:

f'(x) = 6x + 2

Câu b)

Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x)

Giải:

g'(x) = cos(x) - sin(x)

Câu c)

Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1)3

Giải:

h'(x) = 3(x2 + 1)2 * 2x = 6x(x2 + 1)2

Phương pháp giải bài tập đạo hàm hiệu quả

  1. Nắm vững lý thuyết: Hiểu rõ các định nghĩa, định lý, và quy tắc tính đạo hàm.
  2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  3. Sử dụng công cụ hỗ trợ: Sử dụng máy tính cầm tay hoặc các phần mềm tính đạo hàm để kiểm tra kết quả.
  4. Phân tích bài toán: Xác định rõ yêu cầu của bài toán và lựa chọn phương pháp giải phù hợp.
  5. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tusach.vn – Nguồn tài liệu học tập Toán 11 uy tín

Tusach.vn là một trang web cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm sách giáo khoa, sách bài tập, đề thi, và lời giải chi tiết. Chúng tôi cam kết cung cấp cho các em những tài liệu chất lượng, chính xác, và dễ hiểu. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!

Bảng tổng hợp các công thức đạo hàm thường gặp

Hàm số f(x)Đạo hàm f'(x)
C (hằng số)0
xnnxn-1
sin(x)cos(x)
cos(x)-sin(x)

Hy vọng bài giải này sẽ giúp các em hiểu rõ hơn về bài 4 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN