1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 93 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 93 Sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Tìm các giới hạn sau: a) (lim frac{{nleft( {2{n^2} + 3} right)}}{{4{n^3} + 1}}); b) (lim left[ {sqrt n left( {sqrt {n + 5} - sqrt {n + 1} } right)} right]).

Đề bài

Tìm các giới hạn sau:

a) \(\lim \frac{{n\left( {2{n^2} + 3} \right)}}{{4{n^3} + 1}}\);

b) \(\lim \left[ {\sqrt n \left( {\sqrt {n + 5} - \sqrt {n + 1} } \right)} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).

+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)

Lời giải chi tiết

a) \(\lim \frac{{n\left( {2{n^2} + 3} \right)}}{{4{n^3} + 1}} = \lim \frac{{2 + \frac{3}{{{n^2}}}}}{{4 + \frac{1}{{{n^3}}}}} = \frac{{2 + \lim \frac{3}{{{n^2}}}}}{{4 + \lim \frac{1}{{{n^3}}}}} = \frac{1}{2}\);

b) \(\lim \left[ {\sqrt n \left( {\sqrt {n + 5} - \sqrt {n + 1} } \right)} \right] = \lim \frac{{\sqrt n \left( {\sqrt {n + 5} - \sqrt {n + 1} } \right)\left( {\sqrt {n + 5} + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 5} + \sqrt {n + 1} } \right)}}\)

\( = \lim \frac{{4\sqrt n }}{{\sqrt {n + 5} + \sqrt {n + 1} }} = \lim \frac{4}{{\sqrt {1 + \frac{5}{n}} + \sqrt {1 + \frac{1}{n}} }} = \frac{4}{{\sqrt {1 + \lim \frac{5}{n}} + \sqrt {1 + \lim \frac{1}{n}} }} = \frac{4}{{1 + 1}} = 2\)

Giải bài 1 trang 93 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 1 trang 93 Sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi sắp tới mà còn là nền tảng cho các kiến thức toán học nâng cao hơn.

Nội dung bài tập

Bài 1 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số đơn thức, đa thức.
  • Tính đạo hàm của hàm số lượng giác.
  • Tính đạo hàm của hàm số hợp.
  • Áp dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Lời giải chi tiết bài 1 trang 93

Để giúp các em hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng câu hỏi trong bài 1:

Câu a)

Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1

Lời giải:

Áp dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số lũy thừa, ta có:

f'(x) = d(3x2)/dx + d(2x)/dx - d(1)/dx = 6x + 2 - 0 = 6x + 2

Câu b)

Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x)

Lời giải:

Áp dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số lượng giác, ta có:

g'(x) = d(sin(x))/dx + d(cos(x))/dx = cos(x) - sin(x)

Câu c)

Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1)3

Lời giải:

Áp dụng quy tắc đạo hàm của hàm số hợp, ta có:

h'(x) = 3(x2 + 1)2 * d(x2 + 1)/dx = 3(x2 + 1)2 * 2x = 6x(x2 + 1)2

Mẹo giải nhanh

Để giải nhanh các bài tập về đạo hàm, các em cần:

  • Nắm vững các quy tắc đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi có chức năng tính đạo hàm để kiểm tra kết quả.

Lưu ý quan trọng

Khi tính đạo hàm, các em cần chú ý đến:

  • Thứ tự thực hiện các phép toán.
  • Sử dụng đúng các quy tắc đạo hàm.
  • Kiểm tra lại kết quả sau khi tính toán.

Bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong sách bài tập hoặc trên các trang web học tập trực tuyến.

Kết luận

Hy vọng với lời giải chi tiết và những lưu ý trên, các em đã hiểu rõ hơn về cách giải bài 1 trang 93 Sách bài tập Toán 11 Chân trời sáng tạo tập 1. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN