Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài tập 1 trang 61 trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi sẽ đi qua từng bước giải, giải thích rõ ràng các khái niệm và công thức liên quan.
Mục tiêu của chúng tôi là giúp bạn hiểu sâu sắc kiến thức và tự tin giải các bài tập tương tự.
Cho tứ diện ABCD có tam giác BCD vuông cân tại B và \(AB \bot \left( {BCD} \right)\). Cho biết \(BC = a\sqrt 2 ,AB = \frac{a}{{\sqrt 3 }}\).
Đề bài
Cho tứ diện ABCD có tam giác BCD vuông cân tại B và \(AB \bot \left( {BCD} \right)\). Cho biết \(BC = a\sqrt 2 ,AB = \frac{a}{{\sqrt 3 }}\). Xác định và tính góc giữa hai mặt phẳng (ACD) và (BCD).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Góc giữa hai mặt phẳng cắt nhau bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến của hai mặt phẳng.
Lời giải chi tiết

Gọi I là trung điểm của CD.
Tam giác BCD vuông cân tại B nên BI là đường trung tuyến đồng thời là đường cao.
Do đó, \(BI \bot CD\).
Tam giác BCD vuông cân tại B nên \(BC = BD = a\sqrt 2 \)
Vì \(AB \bot \left( {BCD} \right),BD \subset \left( {BCD} \right) \Rightarrow AB \bot BD\). Do đó, tam giác ABD vuông tại B.
Áp dụng định lí Pythagore vào tam giác ABD vuông tại B có:
\(AD = \sqrt {A{B^2} + B{D^2}} = \sqrt {{{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}} = \frac{{a\sqrt {21} }}{3}\)
Vì \(AB \bot \left( {BCD} \right),BC \subset \left( {BCD} \right) \Rightarrow AB \bot BC\). Do đó, tam giác ABC vuông tại B.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
\(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{{\left( {\frac{a}{{\sqrt 3 }}} \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}} = \frac{{a\sqrt {21} }}{3}\)
Do đó, \(AC = AD\) nên tam giác ACD cân tại A.
Nên AI là đường trung tuyến đồng thời là đường cao. Suy ra, \(AI \bot CD\).
Ta có: CD là giao tuyến của hai mặt phẳng (BCD) và (ACD)\(BI \bot CD,AI \bot CD,BI \subset \left( {BCD} \right),AI \subset \left( {ACD} \right)\). Nên \(\left( {\left( {ACD} \right),\left( {BCD} \right)} \right) = \left( {AI,BI} \right) = \widehat {AIB}\)
Áp dụng định lí Pythagore vào tam giác BCD vuông tai B có: \(CD = \sqrt {B{C^2} + B{D^2}} = 2a\)
Tam giác BCD vuông cân tại B nên \(BI = \frac{{CD}}{2} = a\)
Vì \(AB \bot \left( {BCD} \right),BI \subset \left( {BCD} \right) \Rightarrow AB \bot BI\). Do đó, tam giác ABI vuông tại B.
Do đó, \(\tan \widehat {AIB} = \frac{{AB}}{{BI}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {AIB} = {30^0}\)
Bài 1 trang 61 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp để giải quyết.
Thông thường, bài tập 1 sẽ bao gồm các dạng câu hỏi sau:
Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ minh họa (giả định bài tập cụ thể):
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = 2x3 - 5x2 + 3x - 1.
Lời giải:
Áp dụng quy tắc tính đạo hàm của tổng và hiệu, ta có:
f'(x) = d/dx (2x3) - d/dx (5x2) + d/dx (3x) - d/dx (1)
Sử dụng quy tắc tính đạo hàm của lũy thừa, ta có:
f'(x) = 2 * 3x2 - 5 * 2x + 3 * 1 - 0
f'(x) = 6x2 - 10x + 3
Để học tốt môn Toán 11, bạn có thể tham khảo các tài liệu sau:
Bài 1 trang 61 SBT Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Bằng cách nắm vững các kiến thức cơ bản, áp dụng đúng quy tắc và thực hành thường xuyên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập