Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 3 trang 73, đồng thời cung cấp kiến thức nền tảng cần thiết để giải quyết các bài toán tương tự.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và dễ tiếp cận nhất cho học sinh.
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).
Đề bài
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về góc nhị diện: Cho hai nửa mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\) có chung bờ là đường thẳng d. Hình tạo bởi \(\left( {{P_1}} \right)\), \(\left( {{Q_1}} \right)\) và d được gọi là góc nhị diện tạo bởi \(\left( {{P_1}} \right)\) và \(\left( {{Q_1}} \right)\), kí hiệu \(\left[ {{P_1},d,{Q_1}} \right]\).
+ Sử dụng kiến thức về góc phẳng nhị diện để tính: Góc phẳng nhị diện của góc nhị diện có đỉnh nằm trên cạnh của nhị diện, có hai cạnh lần lượt nằm trên hai mặt của nhị diện và vuông góc với cạnh của nhị diện.
Lời giải chi tiết

Gọi M là trung điểm của BC, G là trọng tâm của tam giác ABC.
Suy ra, \(SG \bot \left( {ABC} \right),SM \bot BC,AM \bot BC\)
Do đó, góc SMG là góc phẳng nhị diện \(\left[ {S,BC,A} \right]\)
Vì tam giác ABC đều cạnh a nên \(\widehat {ABC} \) \( = {60^0},AB \) \( = a\), AM là đường trung tuyến đồng thời là đường cao. Do đó, tam giác ABM vuông tại M. Suy ra: \(AM \) \( = AB.\sin {60^0} \) \( = \frac{{a\sqrt 3 }}{2}\)
Vì G là trọng tâm tam giác ABC nên \(GM \) \( = \frac{1}{3}AM \) \( = \frac{{a\sqrt 3 }}{6}\)
Vì tam giác SBC đều nên SM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pythagore vào tam giác SBM vuông tại G ta có:
\(SM \) \( = \sqrt {S{B^2} - B{M^2}} \) \( = \frac{{a\sqrt 6 }}{6}\)
Vì \(SG \bot \left( {ABC} \right) \) \( \Rightarrow SG \bot GM\). Áp dụng định lí Pythagore vào tam giác SGM vuông tại G ta có: \(SG \) \( = \sqrt {S{M^2} - G{M^2}} \) \( = \frac{{a\sqrt 3 }}{6}\)
Vì \(GM \) \( = SG\left( { = \frac{{a\sqrt 3 }}{6}} \right),\widehat {SGM} \) \( = {90^0}\) nên tam giác SMG vuông cân tại G.
Do đó, \(\widehat {SMG} \) \( = {45^0}\)
Bài 3 trang 73 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản, bao gồm đạo hàm của hàm số đơn thức, đa thức, và các hàm số hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 3 thường yêu cầu học sinh:
Để giải bài 3 trang 73 một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1. Ta thực hiện như sau:
f'(x) = (3x2)' + (2x)' + (-1)'
f'(x) = 6x + 2 + 0
f'(x) = 6x + 2
Ngoài bài 3 trang 73, bạn có thể gặp các bài tập tương tự với các hàm số phức tạp hơn. Để giải quyết các bài tập này, bạn cần:
Để học tập hiệu quả hơn, bạn có thể tham khảo các tài liệu sau:
Bài 3 trang 73 sách bài tập Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài toán tương tự. Chúc bạn học tập tốt!
| Quy tắc | Ví dụ |
|---|---|
| Đạo hàm của hàm số lũy thừa | (x3)' = 3x2 |
| Đạo hàm của hàm số đa thức | (2x2 + 5x - 3)' = 4x + 5 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập