1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 14 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 14 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 14 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 5 trang 14, giúp bạn hiểu rõ phương pháp và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, dễ hiểu và hữu ích nhất cho học sinh.

Chứng minh các đẳng thức lượng giác sau: a) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\); b) \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\);

Đề bài

Chứng minh các đẳng thức lượng giác sau:

a) \({\sin ^4}x + {\cos ^4}x = 1 - 2{\sin ^2}x{\cos ^2}x\);

b) \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\);

c) \(\frac{{\sin \alpha + \cos \alpha }}{{{{\sin }^3}\alpha }} = \frac{{1 - {{\cot }^4}\alpha }}{{1 - \cot \alpha }}\);

d) \(\frac{{{{\tan }^2}\alpha + {{\cos }^2}\alpha - 1}}{{{{\cot }^2}\alpha + {{\sin }^2}\alpha - 1}} = {\tan ^6}\alpha \).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 14 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc:

a) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)

b) \(\cot \alpha = \frac{1}{{\tan \alpha }}\)

c) \(\frac{1}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha ,\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\)

d) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), \(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \), \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }}\), \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\), \(\frac{1}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha ,\cot \alpha = \frac{1}{{\tan \alpha }}\)

Lời giải chi tiết

a) \({\sin ^4}x + {\cos ^4}x = {\sin ^4}x + 2{\sin ^2}x{\cos ^2}x + {\cos ^4}x - 2{\sin ^2}x{\cos ^2}x\)

\( = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x = 1 - 2{\sin ^2}x{\cos ^2}x\)

b) \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{1 + \frac{1}{{\tan x}}}}{{1 - \frac{1}{{\tan x}}}} = \frac{{\frac{{\tan x + 1}}{{\tan x}}}}{{\frac{{\tan x - 1}}{{\tan x}}}} = \frac{{\tan x + 1}}{{\tan x - 1}}\);

c) \(\frac{{\sin \alpha + \cos \alpha }}{{{{\sin }^3}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }} + \frac{{\cos \alpha }}{{{{\sin }^3}\alpha }} = 1 + {\cot ^2}\alpha + \cot \alpha \left( {1 + {{\cot }^2}\alpha } \right)\)

\( = \left( {1 + {{\cot }^2}\alpha } \right)\left( {1 + \cot \alpha } \right) = \frac{{\left( {1 + {{\cot }^2}\alpha } \right)\left( {1 + \cot \alpha } \right)\left( {1 - \cot \alpha } \right)}}{{\left( {1 - \cot \alpha } \right)}}\)\( = \frac{{1 - {{\cot }^4}\alpha }}{{1 - \cot \alpha }}\)

d) \(\frac{{{{\tan }^2}\alpha + {{\cos }^2}\alpha - 1}}{{{{\cot }^2}\alpha + {{\sin }^2}\alpha - 1}} = \frac{{{{\tan }^2}\alpha - {{\sin }^2}\alpha }}{{{{\cot }^2}\alpha - {{\cos }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{\frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} - {{\cos }^2}\alpha }}\)

\( = \frac{{{{\sin }^2}\alpha \left( {\frac{1}{{{{\cos }^2}\alpha }} - 1} \right)}}{{{{\cos }^2}\alpha \left( {\frac{1}{{{{\sin }^2}\alpha }} - 1} \right)}} = {\tan ^2}\alpha .\frac{{{{\tan }^2}\alpha }}{{{{\cot }^2}\alpha }} = {\tan ^6}\alpha \)

Giải bài 5 trang 14 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 5 trang 14 Sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định của hàm số lượng giác, tìm giá trị của hàm số tại một điểm cụ thể, và vẽ đồ thị hàm số. Việc nắm vững kiến thức về lượng giác và các phép biến đổi lượng giác là rất quan trọng để giải quyết bài tập này một cách hiệu quả.

Nội dung chi tiết bài 5 trang 14

Bài 5 thường bao gồm các câu hỏi nhỏ, yêu cầu học sinh:

  • Xác định tập xác định của hàm số lượng giác (sin, cos, tan, cot).
  • Tính giá trị của hàm số lượng giác tại một giá trị x cho trước.
  • Phân tích tính chất của hàm số lượng giác (tính tuần hoàn, tính chẵn lẻ).
  • Vẽ đồ thị hàm số lượng giác.

Lời giải chi tiết bài 5 trang 14

Để giúp bạn hiểu rõ hơn, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi trong bài 5 trang 14:

Câu a: (Ví dụ minh họa)

Đề bài: Xác định tập xác định của hàm số y = tan(2x).

Lời giải: Hàm số y = tan(2x) xác định khi và chỉ khi 2x ≠ π/2 + kπ (k ∈ Z). Điều này tương đương với x ≠ π/4 + kπ/2 (k ∈ Z). Vậy tập xác định của hàm số là D = R \ {π/4 + kπ/2 | k ∈ Z}.

Câu b: (Ví dụ minh họa)

Đề bài: Tính giá trị của hàm số y = cos(π/3).

Lời giải: Ta biết rằng cos(π/3) = 1/2. Vậy giá trị của hàm số là y = 1/2.

Mẹo giải bài tập hàm số lượng giác

Để giải tốt các bài tập về hàm số lượng giác, bạn nên:

  1. Nắm vững các công thức lượng giác cơ bản.
  2. Hiểu rõ tính chất của từng hàm số lượng giác (tập xác định, tập giá trị, tính tuần hoàn, tính chẵn lẻ).
  3. Luyện tập thường xuyên với nhiều dạng bài tập khác nhau.
  4. Sử dụng máy tính bỏ túi để kiểm tra kết quả.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán trực tuyến.
  • Các video hướng dẫn giải bài tập toán trên YouTube.
  • Các diễn đàn trao đổi kiến thức toán học.

Kết luận

Hy vọng rằng với lời giải chi tiết và những lời khuyên hữu ích trên, bạn đã có thể tự tin giải bài 5 trang 14 Sách bài tập Toán 11 Chân trời sáng tạo tập 1. Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn. Chúc bạn học tập tốt!

Hàm sốTập xác định
y = sin(x)R
y = cos(x)R
y = tan(x)R \ {π/2 + kπ | k ∈ Z}
y = cot(x)R \ {kπ | k ∈ Z}

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN