Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 12 trang 85, đồng thời cung cấp kiến thức nền tảng cần thiết để giải quyết các bài toán tương tự.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và dễ dàng tiếp cận nhất cho học sinh.
Trong mặt phẳng tọa độ Oxy, cho điểm \(M\left( {t,{t^2}} \right),t > 0\), nằm trên đường parabol \(y = {x^2}\). Đường trung trực của đoạn thẳng OM cắt trục tung tại N. Điểm N dần đến điểm nào khi M dần đến điểm O?
Đề bài
Trong mặt phẳng tọa độ Oxy, cho điểm \(M\left( {t,{t^2}} \right),t > 0\), nằm trên đường parabol \(y = {x^2}\). Đường trung trực của đoạn thẳng OM cắt trục tung tại N. Điểm N dần đến điểm nào khi M dần đến điểm O?

Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giới hạn một phía để tính:
+ Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\), khi đó: \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\)
+ \(\mathop {\lim }\limits_{x \to x_0^ + } c = c\) (với c là hằng số).
Lời giải chi tiết
Trung điểm của đoạn thẳng OM là \(I\left( {\frac{t}{2};\frac{{{t^2}}}{2}} \right)\)
Đường trung trực của OM nhận vectơ \(\overrightarrow {OM} = \left( {t,{t^2}} \right)\) làm vectơ pháp tuyến nên có phương trình d: \(t\left( {x - \frac{t}{2}} \right) + {t^2}\left( {y - \frac{{{t^2}}}{2}} \right) = 0\).
Thay \(x = 0\) vào phương trình của d, ta nhận được \(y = \frac{1}{2}\left( {1 + {t^2}} \right)\)
Suy ra \(N\left( {0;\frac{1}{2}\left( {1 + {t^2}} \right)} \right)\).
Điểm M dần đến điểm O khi t dần đến \({0^ + }\). Ta có: \(\mathop {\lim }\limits_{t \to {0^ + }} \frac{1}{2}\left( {1 + {t^2}} \right) = \frac{1}{2}\left( {1 + {0^2}} \right) = \frac{1}{2}\).
Suy ra điểm M dần đến điểm O khi điểm N dần đến điểm \(A\left( {0;\frac{1}{2}} \right)\).
Bài 12 trang 85 Sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm (đạo hàm của tổng, hiệu, tích, thương, hàm hợp) và đạo hàm của một số hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit) để giải quyết các bài toán cụ thể.
Thông thường, bài tập 12 trang 85 sẽ bao gồm các dạng bài sau:
Để giải bài 12 trang 85 một cách hiệu quả, bạn cần:
Dưới đây là ví dụ về cách giải một dạng bài tập thường gặp trong bài 12 trang 85:
Giải:
Áp dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:
f'(x) = 3x^2 + 4x - 5
Để học tốt môn Toán 11 và giải quyết các bài tập trong sách bài tập, bạn có thể tham khảo các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 12 trang 85 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 một cách hiệu quả. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập