Bài 2 trang 22 SBT Toán 11 Chân trời sáng tạo tập 2 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về... (nội dung cụ thể của bài tập).
Tại tusach.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, cùng với các phương pháp giải bài tập hiệu quả, giúp bạn nắm vững kiến thức và tự tin làm bài.
Giải các phương trình sau:
Đề bài
Giải các phương trình sau:
a) \({\log _3}\left( {2x - 1} \right) = 3\);
b) \({\log _{49}}x = 0,25\);
c) \({\log _2}\left( {3x + 1} \right) = {\log _2}\left( {2x - 4} \right)\);
d) \({\log _5}\left( {x - 1} \right) + {\log _5}\left( {x - 3} \right) = {\log _5}\left( {2x + 10} \right)\);
e) \(\log x + \log \left( {x - 3} \right) = 1\);
g) \({\log _2}\left( {{{\log }_{81}}x} \right) = - 2\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:
\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)
Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).
Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))
Lời giải chi tiết
a) Điều kiện: \(2x - 1 > 0 \) \( \Leftrightarrow x > \frac{1}{2}\)
\({\log _3}\left( {2x - 1} \right) = 3 \) \( \Leftrightarrow 2x - 1 = {3^3} \) \( \Leftrightarrow 2x = 28 \) \( \Leftrightarrow x = 14\left( {tm} \right)\)
Vậy phương trình có nghiệm là \(x = 14\)
b) Điều kiện: \(x > 0\)
\({\log _{49}}x = 0,25 \) \( \Leftrightarrow x = {49^{0,25}} = {7^{0,5}} = \sqrt 7 \left( {tm} \right)\)
Vậy phương trình có nghiệm là \(x = \sqrt 7 \)
c) Điều kiện: \(x > 2\)
\({\log _2}\left( {3x + 1} \right) = {\log _2}\left( {2x - 4} \right) \) \( \Leftrightarrow 3x + 1 = 2x - 4 \) \( \Leftrightarrow x = - 5\left( L \right)\)
Vậy phương trình đã cho vô nghiệm.
d) Điều kiện: \(x > 3\)
\({\log _5}\left( {x - 1} \right) + {\log _5}\left( {x - 3} \right) = {\log _5}\left( {2x + 10} \right) \) \( \Leftrightarrow {\log _5}\left( {x - 1} \right)\left( {x - 3} \right) = {\log _5}\left( {2x + 10} \right)\)
\( \) \( \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 2x + 10 \) \( \Leftrightarrow {x^2} - 4x + 3 = 2x + 10 \) \( \Leftrightarrow {x^2} - 6x - 7 = 0\)
\( \) \( \Leftrightarrow \left( {x + 1} \right)\left( {x - 7} \right) = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 7 = 0\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}x = - 1\left( L \right)\\x = 7\left( {tm} \right)\end{array} \right.\)
Vậy phương trình có nghiệm là \(x = 7\)
e) Điều kiện: \(x > 3\)
\(\log x + \log \left( {x - 3} \right) = 1 \) \( \Leftrightarrow \log x\left( {x - 3} \right) = \log 10 \) \( \Leftrightarrow {x^2} - 3x = 10\)
\( \) \( \Leftrightarrow \left( {x - 5} \right)\left( {x + 2} \right) = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\x + 2 = 0\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}x = 5\left( {TM} \right)\\x = - 2\left( L \right)\end{array} \right.\)
Vậy phương trình có nghiệm là \(x = 5\)
g) Điều kiện: \(x > 0\).
\({\log _2}\left( {{{\log }_{81}}x} \right) = - 2 \) \( \Leftrightarrow {\log _{81}}x = {2^{ - 2}} = \frac{1}{4} \) \( \Leftrightarrow x = {81^{\frac{1}{4}}} = 3\left( {tm} \right)\)
Vậy phương trình có nghiệm là \(x = 3\).
Bài 2 trang 22 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng về... (nêu rõ chủ đề bài tập, ví dụ: hàm số, lượng giác, tổ hợp...). Bài tập này đòi hỏi học sinh phải nắm vững kiến thức lý thuyết và áp dụng linh hoạt các công thức, định lý đã học.
Để hiểu rõ hơn về bài tập này, chúng ta cần xem xét nội dung cụ thể. Bài tập yêu cầu... (mô tả chi tiết yêu cầu của bài tập). Việc hiểu đúng yêu cầu là bước đầu tiên quan trọng để giải bài tập thành công.
Dưới đây là lời giải chi tiết cho bài 2 trang 22 Sách bài tập Toán 11 Chân trời sáng tạo tập 2:
Ví dụ minh họa:
(Giải bài tập cụ thể với các bước chi tiết, kèm theo giải thích rõ ràng)
Để củng cố kiến thức và kỹ năng, bạn có thể tham khảo thêm các bài tập tương tự sau:
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm sách giáo khoa, sách bài tập, đề thi, lời giải chi tiết và các bài viết hướng dẫn học tập. Chúng tôi cam kết cung cấp cho bạn những tài liệu chất lượng, chính xác và hữu ích nhất.
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập Toán 11 và nâng cao kết quả học tập của bạn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập