Chào mừng bạn đến với lời giải chi tiết bài 1 trang 75 sách bài tập Toán 11 Chân trời sáng tạo tập 1 trên tusach.vn. Bài viết này sẽ cung cấp phương pháp giải và đáp án chính xác, giúp bạn hiểu rõ hơn về nội dung bài học và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, giúp bạn đạt kết quả cao trong môn Toán.
Tìm các giới hạn sau: a) \(\lim \left( {2 + \frac{5}{n}} \right)\); b) \(\lim \left( {\frac{3}{n} - \frac{2}{{{n^2}}}} \right)\); c) \(\lim \left( {3 - \frac{4}{n}} \right)\left( {2 + \frac{5}{{{n^2}}}} \right)\); d) \(\lim \frac{{3 - \frac{3}{n}}}{{1 + \frac{1}{{{n^3}}}}}\).
Đề bài
Tìm các giới hạn sau:
a) \(\lim \left( {2 + \frac{5}{n}} \right)\);
b) \(\lim \left( {\frac{3}{n} - \frac{2}{{{n^2}}}} \right)\);
c) \(\lim \left( {3 - \frac{4}{n}} \right)\left( {2 + \frac{5}{{{n^2}}}} \right)\);
d) \(\lim \frac{{3 - \frac{3}{n}}}{{1 + \frac{1}{{{n^3}}}}}\).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\): \(\lim \left( {{u_n} + {v_n}} \right) = a + b\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số).
b) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} - {v_n}} \right) = a - b\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương.
c) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\): \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
d) Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).
+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)
Lời giải chi tiết
a) \(\lim \left( {2 + \frac{5}{n}} \right) = \lim 2 + \lim \frac{5}{n} = 2 + 0 = 2\);
b) \(\lim \left( {\frac{3}{n} - \frac{2}{{{n^2}}}} \right) = \lim \frac{3}{n} - \lim \frac{2}{{{n^2}}} = 0 - 0 = 0\);
c) \(\lim \left( {3 - \frac{4}{n}} \right)\left( {2 + \frac{5}{{{n^2}}}} \right)\)\( = \lim \left( {3 - \frac{4}{n}} \right)\lim \left( {2 + \frac{5}{{{n^2}}}} \right)\)\( = \left( {\lim 3 - \lim \frac{4}{n}} \right)\left( {\lim 2 + \lim \frac{5}{{{n^2}}}} \right)\)
\( = 3.2 = 6\)
d) \(\lim \frac{{3 - \frac{3}{n}}}{{1 + \frac{1}{{{n^3}}}}}\)\( = \frac{{\lim \left( {3 - \frac{3}{n}} \right)}}{{\lim \left( {1 + \frac{1}{{{n^3}}}} \right)}}\)\( = \frac{{\lim 3 - \lim \frac{3}{n}}}{{\lim 1 + \lim \frac{1}{{{n^3}}}}}\)\( = \frac{3}{1} = 3\)
Bài 1 trang 75 SBT Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số đơn giản như hàm đa thức, hàm lượng giác, và hàm hợp. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 11.
Bài 1 thường bao gồm các yêu cầu sau:
Để giải bài 1 trang 75 SBT Toán 11 Chân trời sáng tạo tập 1 hiệu quả, bạn cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 1 trang 75 SBT Toán 11 Chân trời sáng tạo tập 1:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 5x - 2
Lời giải:
f'(x) = d/dx (3x2) + d/dx (5x) - d/dx (2)
f'(x) = 6x + 5 - 0
f'(x) = 6x + 5
Đề bài: Tính đạo hàm của hàm số g(x) = sin(2x)
Lời giải:
g'(x) = d/dx (sin(2x))
g'(x) = cos(2x) * d/dx (2x)
g'(x) = 2cos(2x)
Đề bài: Tính đạo hàm của hàm số h(x) = ex + ln(x)
Lời giải:
h'(x) = d/dx (ex) + d/dx (ln(x))
h'(x) = ex + 1/x
Khi giải các bài tập về đạo hàm, bạn cần chú ý đến các quy tắc đạo hàm và áp dụng chúng một cách chính xác. Ngoài ra, việc kiểm tra lại kết quả là rất quan trọng để đảm bảo tính chính xác của bài giải.
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 1. Hãy truy cập tusach.vn để tìm kiếm lời giải cho các bài tập khác và nâng cao kiến thức của bạn!
| Hàm số | Đạo hàm |
|---|---|
| f(x) = xn | f'(x) = nxn-1 |
| f(x) = sin(x) | f'(x) = cos(x) |
| f(x) = cos(x) | f'(x) = -sin(x) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập