Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài tập 1 trang 25 trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi sẽ đi qua từng bước giải, giải thích rõ ràng các khái niệm và công thức liên quan.
Mục tiêu của chúng tôi là giúp bạn hiểu sâu sắc bài học và tự tin giải các bài tập tương tự.
Tính giá trị của các biểu thức
Đề bài
Tính giá trị của các biểu thức
a) \({\left( {\frac{{27}}{8}} \right)^{\frac{5}{6}}}.{\left( {\frac{{{4^{\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}}\);
b) \(\log \sqrt 5 + \log \sqrt 2 \);
c) \({\left( {\frac{{16}}{{81}}} \right)^{ - \frac{3}{4}}} + {\log _5}\frac{9}{4} + {\log _5}\frac{4}{9}\);
d) \({\log _2}7.{\log _3}16.{\log _9}3.{\log _7}9\).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về lũy thừa với số mũ để tính: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\), \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta }}\)
b) Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)
c) + Sử dụng kiến thức về lũy thừa với số mũ để tính: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\)
Sử dụng kiến thức về phép tính lôgarit để tính: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)
d) Sử dụng kiến thức về phép tính lôgarit để tính: Cho các số dương a, b, N, \(a \ne 1,b \ne 1\) ta có: \({\log _a}N = \frac{{{{\log }_b}N}}{{{{\log }_b}a}}\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)
Lời giải chi tiết
a) \({\left( {\frac{{27}}{8}} \right)^{\frac{5}{6}}}.{\left( {\frac{{{4^{\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{3.\frac{5}{6}}}{\left( {\frac{{{2^{2.\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2}}}.{\left( {\frac{2}{3}} \right)^{\frac{3}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2}}}.{\left( {\frac{3}{2}} \right)^{\frac{{ - 3}}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2} + \frac{{ - 3}}{2}}} \) \( = \frac{3}{2}\);
b) \(\log \sqrt 5 + \log \sqrt 2 \) \( = \log \left( {\sqrt 5 .\sqrt 2 } \right) \) \( = \log \sqrt {10} \) \( = \log {10^{\frac{1}{2}}} \) \( = \frac{1}{2}\);
c) \({\left( {\frac{{16}}{{81}}} \right)^{ - \frac{3}{4}}} + {\log _5}\frac{9}{4} + {\log _5}\frac{4}{9} \) \( = {\left( {\frac{2}{3}} \right)^{4.\frac{{ - 3}}{4}}} + {\log _5}\left( {\frac{9}{4}.\frac{4}{9}} \right) \) \( = {\left( {\frac{2}{3}} \right)^{ - 3}} + {\log _5}1 \) \( = {\left( {\frac{3}{2}} \right)^3} \) \( = \frac{{27}}{8}\);
d) \({\log _2}7.{\log _3}16.{\log _9}3.{\log _7}9 \) \( = \frac{{{{\log }_9}7}}{{{{\log }_9}2}}.{\log _7}9.2{\log _3}4.\frac{1}{2}{\log _3}3 \) \( = \frac{1}{{{{\log }_7}9.{{\log }_9}2}}.{\log _7}9.{\log _3}4\)
\( \) \( = \frac{{2{{\log }_3}2}}{{\frac{1}{2}{{\log }_3}2}} \) \( = 4\)
Bài 1 trang 25 SBT Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về hàm số, đồ thị hàm số và các phép biến đổi đồ thị. Bài tập này thường yêu cầu học sinh phân tích hàm số, xác định các yếu tố quan trọng như tập xác định, tập giá trị, tính đơn điệu, cực trị và vẽ đồ thị hàm số.
Để giải quyết bài 1 trang 25 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết cho bài 1 trang 25, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Bài 1: Cho hàm số y = f(x) = x2 - 4x + 3. Hãy xác định:
Giải:
| x | y = f(x) |
|---|---|
| -1 | 8 |
| 0 | 3 |
| 1 | 0 |
| 2 | -1 |
| 3 | 0 |
| 4 | 3 |
Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn đã có thể tự tin giải bài 1 trang 25 SBT Toán 11 Chân trời sáng tạo tập 2. Hãy tiếp tục luyện tập và học hỏi để đạt kết quả tốt nhất trong môn Toán.
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập