Chào mừng các em học sinh đến với lời giải chi tiết bài 5 trang 20 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Chứng minh rằng giá trị của các biểu thức không phụ thuộc vào giá trị của x. a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);
Đề bài
Chứng minh rằng giá trị của các biểu thức không phụ thuộc vào giá trị của x.
a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);
b) \(\cos \left( {x - \frac{\pi }{3}} \right)\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x + \frac{{3\pi }}{4}} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức lượng giác để tính:
a) \(\cos \alpha \cos \beta = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right]\), \(\cos 2\alpha = 2{\cos ^2}\alpha - 1\)
b) \(\cos \alpha \cos \beta = \frac{1}{2}\left[ {\cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha - \beta } \right)} \right]\)
Lời giải chi tiết
a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) \) \(= {\sin ^2}x + \frac{1}{2}\left( {\cos \frac{{2\pi }}{3} + \cos 2x} \right) \) \(= {\sin ^2}x - \frac{1}{4} + \frac{1}{2}\cos 2x\)
\(= {\sin ^2}x - \frac{1}{4} + \frac{1}{2}\left( {1 - 2{{\sin }^2}x} \right) \) \(= \frac{1}{4}\)
Vậy giá trị của biểu thức \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\) không phụ thuộc vào giá trị của x.
b) \(\cos \left( {x - \frac{\pi }{3}} \right)\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x + \frac{{3\pi }}{4}} \right)\)
\(= \frac{1}{2}\left[ {\cos \frac{{7\pi }}{{12}} + \cos \left( {2x - \frac{\pi }{{12}}} \right)} \right] + \frac{1}{2}\left[ {\cos \frac{{7\pi }}{{12}} + \cos \left( {2x + \frac{{11\pi }}{{12}}} \right)} \right]\)
\(= \frac{1}{2}\left[ {\cos \left( {2x - \frac{\pi }{{12}}} \right) + \cos \left( {2x + \pi - \frac{\pi }{{12}}} \right)} \right] + \cos \frac{{7\pi }}{{12}}\)
\(= \frac{1}{2}\left[ {\cos \left( {2x - \frac{\pi }{{12}}} \right) - \cos \left( {2x - \frac{\pi }{{12}}} \right)} \right] + \cos \frac{{7\pi }}{{12}} \) \(= \cos \frac{{7\pi }}{{12}}\)
Vậy giá trị của biểu thức \(\cos \left( {x - \frac{\pi }{3}} \right)\cos \left( {x + \frac{\pi }{4}} \right) + \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x + \frac{{3\pi }}{4}} \right)\) không phụ thuộc vào giá trị của x.
Bài 5 trang 20 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản (sin, cos, tan, cot) để giải quyết các bài toán liên quan đến việc xác định giá trị của hàm số, tìm tập xác định, tập giá trị, và vẽ đồ thị hàm số.
Bài 5 bao gồm các câu hỏi và bài tập nhỏ, tập trung vào các kỹ năng sau:
Đề bài: (Ví dụ về đề bài câu a)
Lời giải: (Giải thích chi tiết từng bước giải câu a, kèm theo công thức và ví dụ minh họa)
Đề bài: (Ví dụ về đề bài câu b)
Lời giải: (Giải thích chi tiết từng bước giải câu b, kèm theo công thức và ví dụ minh họa)
Đề bài: (Ví dụ về đề bài câu c)
Lời giải: (Giải thích chi tiết từng bước giải câu c, kèm theo công thức và ví dụ minh họa)
Để giải tốt các bài tập về hàm số lượng giác, các em cần:
Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những lời khuyên trên, các em sẽ tự tin giải bài 5 trang 20 SBT Toán 11 Chân trời sáng tạo tập 1 và đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập