Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 31 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Tìm tập xác định của hàm số lượng giác \(y = \frac{{\sin x - 2\cos 3x}}{{\sin x + \sin \left( {2x - \frac{\pi }{3}} \right)}}\)
Đề bài
Tìm tập xác định của hàm số lượng giác \(y = \frac{{\sin x - 2\cos 3x}}{{\sin x + \sin \left( {2x - \frac{\pi }{3}} \right)}}\)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình lượng giác để giải:
Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).
Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
Hàm số \(y = \frac{{\sin x - 2\cos 3x}}{{\sin x + \sin \left( {2x - \frac{\pi }{3}} \right)}}\) xác định khi \(\sin x + \sin \left( {2x - \frac{\pi }{3}} \right) \ne 0\)
\( \Leftrightarrow \sin x \ne - \sin \left( {2x - \frac{\pi }{3}} \right) \) \( \Leftrightarrow \sin x \ne \sin \left( { - 2x + \frac{\pi }{3}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x \ne - 2x + \frac{\pi }{3} + k2\pi \\x \ne \pi - \left( { - 2x + \frac{\pi }{3}} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left\{ \begin{array}{l}x \ne \frac{\pi }{9} + \frac{{k2\pi }}{3}\\x \ne \frac{{ - 2\pi }}{3} - k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{9} + \frac{{k2\pi }}{3},\frac{{ - 2\pi }}{3} - k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\)
Bài 4 trang 31 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản (sin, cos, tan, cot) để giải quyết các bài toán liên quan đến việc xác định giá trị của hàm số, tìm tập xác định, tập giá trị và vẽ đồ thị hàm số.
Bài 4 bao gồm các câu hỏi nhỏ, mỗi câu hỏi tập trung vào một khía cạnh khác nhau của hàm số lượng giác. Dưới đây là phân tích chi tiết từng câu hỏi:
Để xác định tập xác định của hàm số, học sinh cần lưu ý các điều kiện sau:
Ví dụ, nếu hàm số có dạng y = 1/(sin x), thì tập xác định của hàm số là tất cả các giá trị x sao cho sin x ≠ 0, tức là x ≠ kπ (k là số nguyên).
Tập giá trị của hàm số là tập hợp tất cả các giá trị mà hàm số có thể nhận được. Để tìm tập giá trị, học sinh có thể sử dụng các phương pháp sau:
Ví dụ, tập giá trị của hàm số y = sin x là [-1, 1].
Để vẽ đồ thị hàm số, học sinh cần:
Sử dụng các phần mềm vẽ đồ thị như Geogebra có thể giúp học sinh vẽ đồ thị một cách chính xác và nhanh chóng.
Để giải tốt các bài tập về hàm số lượng giác, học sinh cần nắm vững các kiến thức sau:
Ngoài ra, việc luyện tập thường xuyên với các bài tập khác nhau cũng rất quan trọng để học sinh có thể áp dụng kiến thức một cách linh hoạt và hiệu quả.
(Đáp án chi tiết sẽ được trình bày ở đây, bao gồm từng câu a, b, c với lời giải cụ thể và dễ hiểu)
Khi giải bài tập về hàm số lượng giác, học sinh cần chú ý:
Bài 4 trang 31 SBT Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Hy vọng với lời giải chi tiết và phương pháp giải khoa học mà tusach.vn cung cấp, các em sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập