Bài 6 trang 134 sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình chóp S. ABCD, đáy ABCD là hình thang có đáy lớn AB và \(AD = a\). Mặt bên SAB là tam giác cân tại S, \(SA = a\); mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. a) Chứng minh MNPQ là hình thang cân. b) Đặt \(x = AM\) với \(0 < x < a\). Tính MQ theo a và x.
Đề bài
Cho hình chóp S. ABCD, đáy ABCD là hình thang có đáy lớn AB và \(AD = a\). Mặt bên SAB là tam giác cân tại S, \(SA = a\); mặt phẳng (R) song song với (SAB) và cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q.
a) Chứng minh MNPQ là hình thang cân.
b) Đặt \(x = AM\) với \(0 < x < a\). Tính MQ theo a và x.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất của hai mặt phẳng song song để chứng minh: Cho hai mặt phẳng (P) và (Q) song song với nhau. Nếu mặt phẳng (R) cắt (P) thì cắt (Q) và hai giao tuyến của chúng song song với nhau.
Lời giải chi tiết

Ta có: Giao tuyến của mặt phẳng (ABCD) và (R) là MN, giao tuyến của mặt phẳng (ABCD) và (SAB) là AB. Mà (R)//(SAB) nên MN//AB.
Chứng minh tương tự ta có: các mặt phẳng (SAD), (SCB), (SCD) cắt hai mặt phẳng song song (R) và (SAB) theo các cặp giao tuyến song song.
Suy ra: MQ//SA, NP//SB, QP//CD//AB.
Do đó, MN//PQ nên tứ giác MNPQ là hình thang.
Ta có: \(\frac{{MQ}}{{SA}} = \frac{{DM}}{{DA}} = \frac{{CN}}{{CB}} = \frac{{NP}}{{SB}}\) (hệ quả định lí Thalès) và \(SA = SB \Rightarrow MQ = NP\)
Kẻ QK vuông góc với MN tại K, PH vuông góc với MN tại H.
Chứng minh được \(\Delta MKQ = \Delta NHP\left( {ch - cgv} \right) \Rightarrow \widehat {QMK} = \widehat {PNH}\)
Do đó, hình thang MNPQ là hình thang cân.
b) Ta có: \(\frac{{MQ}}{{SA}} = \frac{{DM}}{{DA}} \Rightarrow \frac{{MQ}}{a} = \frac{{a - x}}{a} \Rightarrow MQ = a - x\)
Bài 6 trang 134 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để tìm cực trị của hàm số, một kỹ năng quan trọng trong toán học và có ứng dụng thực tế cao.
(Nội dung đề bài sẽ được chèn vào đây. Ví dụ:) Tìm cực trị của các hàm số sau:
Để giải bài tập tìm cực trị của hàm số, chúng ta cần thực hiện các bước sau:
a) y = x3 - 3x2 + 2
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + |
b) y = -x4 + 4x2 - 1
(Giải tương tự như phần a, trình bày chi tiết các bước)
Hy vọng với hướng dẫn chi tiết này, các em học sinh có thể tự tin giải bài 6 trang 134 SBT Toán 11 Chân trời sáng tạo tập 1 và các bài tập tương tự. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập