Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác nhất cho bài tập 1 trang 38 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi hiểu rằng việc giải bài tập có thể gặp nhiều khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu và logic nhất.
Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết các bài toán tương tự.
Cho hàm số (y = sqrt[3]{x}). Chứng minh rằng (y'left( x right) = frac{1}{{3sqrt[3]{{{x^2}}}}}left( {x ne 0} right)).
Đề bài
Cho hàm số \(y = \sqrt[3]{x}\). Chứng minh rằng \(y'\left( x \right) = \frac{1}{{3\sqrt[3]{{{x^2}}}}}\left( {x \ne 0} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa đạo hàm để chứng minh: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
Lời giải chi tiết
Với bất kì \({x_0} \ne 0\) ta có: \(y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt[3]{x} - \sqrt[3]{{{x_0}}}}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt[3]{x} - \sqrt[3]{{{x_0}}}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}}{{\left( {x - {x_0}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}}} = \frac{1}{{{{\left( {\sqrt[3]{{{x_0}}}} \right)}^2} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}}} = \frac{1}{{3\sqrt[3]{{x_0^2}}}}\)
Vậy \(y'\left( x \right) = \frac{1}{{3\sqrt[3]{{{x^2}}}}}\left( {x \ne 0} \right)\)
Bài 1 trang 38 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Thông thường, bài tập 1 trang 38 sẽ bao gồm các dạng bài sau:
Để giải bài 1 trang 38 sách bài tập Toán 11 Chân trời sáng tạo tập 2, bạn cần:
Ví dụ minh họa (giả định bài tập cụ thể):
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x^2 + 3x - 2.
Lời giải:
Áp dụng quy tắc tính đạo hàm của tổng và đạo hàm của hàm số mũ, ta có:
f'(x) = 2x + 3
Để giải bài tập đạo hàm nhanh và hiệu quả, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng rằng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 1 trang 38 sách bài tập Toán 11 Chân trời sáng tạo tập 2 một cách hiệu quả. Hãy luyện tập thường xuyên để nắm vững kiến thức và tự tin giải quyết các bài toán đạo hàm khác.
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập