Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và tự tin làm bài tập.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.
Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh a, \(SA \) \( = a\sqrt 3 \) và vuông góc với đáy. Xác định và tính góc giữa:
Đề bài
Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh a, \(SA \) \( = a\sqrt 3 \) và vuông góc với đáy. Xác định và tính góc giữa:
a) SB và (ABCD);
b) SC và (ABCD);
c) SD và (ABCD);
d) SB và (SAC).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính:
+ Nếu đường thẳng a vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a với (P) bằng \({90^0}\).
+ Nếu đường thẳng a không vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a và hình chiếu a’ của a trên (P) gọi là góc giữa đường thẳng a và (P).
Lời giải chi tiết

Vì \(SA \bot \left( {ABCD} \right)\) nên A là hình chiếu của S trên mặt phẳng (ABCD).
a) Ta có: \(\left( {SB,\left( {ABCD} \right)} \right) \) \( = \left( {SB,AB} \right) \) \( = \widehat {SBA}\)
Vì \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot AB\). Do đó, tam giác SBA vuông tại A.
Suy ra: \(\tan \widehat {SBA} \) \( = \frac{{SA}}{{AB}} \) \( = \frac{{a\sqrt 3 }}{a} \) \( = \sqrt 3 \) \( \Rightarrow \widehat {SBA} \) \( = {60^0}\)
b) Ta có: \(\left( {SC,\left( {ABCD} \right)} \right) \) \( = \left( {SC,AC} \right) \) \( = \widehat {SCA}\)
Vì ABCD là hình vuông nên tam giác ACD vuông tại D.
Suy ra: \(AC \) \( = \sqrt {A{D^2} + D{C^2}} \) \( = a\sqrt 2 \) (định lí Pythagore)
Vì \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot AC\). Do đó, tam giác SCA vuông tại A.
Suy ra: \(\tan \widehat {SCA} \) \( = \frac{{SA}}{{AC}} \) \( = \frac{{a\sqrt 3 }}{{a\sqrt 2 }} \) \( = \frac{{\sqrt 6 }}{2} \) \( \Rightarrow \widehat {SCA} \) \( = 50,{8^0}\)
c) Ta có: \(\left( {SD,\left( {ABCD} \right)} \right) \) \( = \left( {SD,AD} \right) \) \( = \widehat {SDA}\)
Vì \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot AD\). Do đó, tam giác SDA vuông tại A.
Suy ra: \(\tan \widehat {SDA} \) \( = \frac{{SA}}{{AD}} \) \( = \frac{{a\sqrt 3 }}{a} \) \( = \sqrt 3 \) \( \Rightarrow \widehat {SDA} \) \( = {60^0}\)
d) Vì ABCD là hình vuông nên \(BO \bot AC\)
Mà \(SA \bot \left( {ABCD} \right) \) \( \Rightarrow SA \bot BO\) nên \(BO \bot \left( {SAC} \right)\)
Do đó, O là hình chiếu của B trên mặt phẳng (SAC)
Do đó, \(\left( {SB,\left( {SAC} \right)} \right) \) \( = \left( {SB,SO} \right) \) \( = \widehat {BSO}\)
Tam giác SAB vuông tại A nên \(SB \) \( = \sqrt {A{B^2} + S{A^2}} \) \( = \sqrt {{a^2} + {{\left( {a\sqrt 3 } \right)}^2}} \) \( = 2a\) (định lí Pythagore)
Vì ABCD là hình vuông nên \(OB \) \( = \frac{1}{2}AC \) \( = \frac{{a\sqrt 2 }}{2}\)
Tam giác SBO vuông tại O nên \(\sin \widehat {BSO} \) \( = \frac{{OB}}{{SB}} \) \( = \frac{{a\sqrt 2 }}{{2.2a}} \) \( = \frac{{\sqrt 2 }}{4} \) \( \Rightarrow \widehat {BSO} \approx 20,{7^0}\)
Bài 1 trang 73 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức và quy tắc đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi trong bài 1, ví dụ):
Lời giải:
f'(x) = 2x + 3
f'(1) = 2(1) + 3 = 5
Vậy, đạo hàm của hàm số f(x) tại x = 1 là 5.
Lời giải:
g'(x) = cos(x) - sin(x)
Vậy, đạo hàm của hàm số g(x) là cos(x) - sin(x).
Để giải các bài tập về đạo hàm một cách hiệu quả, các em có thể tham khảo một số mẹo sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Để hiểu sâu hơn về đạo hàm, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những mẹo giải bài tập trên, các em sẽ tự tin hơn khi giải bài 1 trang 73 SBT Toán 11 Chân trời sáng tạo tập 2. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập