1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 4 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 39 SBT Toán 11 Chân trời sáng tạo tập 2

Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài 4 trang 39 trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi sẽ trình bày các bước giải cụ thể, kèm theo giải thích rõ ràng để giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.

Gọi (C) là đồ thị của hàm số (y = {x^3} - 2{x^2} + 1). Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó

Đề bài

Gọi (C) là đồ thị của hàm số \(y = {x^3} - 2{x^2} + 1\). Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó

a) Song song với đường thẳng \(y = - x + 2\);

b) Vuông góc với đường thẳng \(y = - \frac{1}{4}x - 4\);

c) Đi qua điểm A(0; 1).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).

Tiếp tuyến \({M_0}T\) có phương trình là: \(y - y\left( {{x_0}} \right) = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

Lời giải chi tiết

Với \({x_0}\) bất kì ta có: \(y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - 2{x^2} + 1 - x_0^3 + 2x_0^2 - 1}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - x_0^3} \right) - 2\left( {{x^2} - x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2 - 2{x_0} - 2x} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2 - 2{x_0} - 2x} \right) = x_0^2 + x_0^2 + x_0^2 - 4{x_0} = x_0^2 + x_0^2 + x_0^2 - 4{x_0} = 3x_0^2 - 4{x_0}\)

Vậy \(y'\left( x \right) = 3{x^2} - 4x\)

a) Tiếp tuyến tại điểm \({x_0}\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

Vì tiếp tuyến của đồ thị hàm số (C) song song với đường thẳng \(y = - x + 2\) nên \(f'\left( {{x_0}} \right) = - 1 \Leftrightarrow 3x_0^2 - 4{x_0} + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{1}{3}\\{x_0} = 1\end{array} \right.\)

Ta có: \(y\left( 1 \right) = 0,y\left( {\frac{1}{3}} \right) = \frac{{22}}{{27}}\)

Tiếp tuyến của đồ thị hàm số tại điểm \(x = 1\) là:

\(y = y'\left( 1 \right)\left( {x - 1} \right) + y\left( 1 \right) = \left( { - 1} \right)\left( {x - 1} \right) = - x + 1\)

Tiếp tuyến của đồ thị hàm số tại điểm \(x = \frac{1}{3}\) là:

\(y = y'\left( {\frac{1}{3}} \right)\left( {x - \frac{1}{3}} \right) + y\left( {\frac{1}{3}} \right) = \left( { - 1} \right)\left( {x - \frac{1}{3}} \right) + \frac{{22}}{{27}} = - x + \frac{{31}}{{27}}\)

b) Tiếp tuyến tại điểm \({x_0}\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

Vì tiếp tuyến của đồ thị hàm số (C) vuông góc với đường thẳng \(y = - \frac{1}{4}x + 2\) nên \(f'\left( {{x_0}} \right) = 4 \Leftrightarrow 3x_0^2 - 4{x_0} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = \frac{{ - 2}}{3}\\{x_0} = 2\end{array} \right.\)

Lại có \(y\left( 2 \right) = 1,y\left( {\frac{{ - 2}}{3}} \right) = \frac{{ - 5}}{{27}}\)

Tiếp tuyến của đồ thị hàm số tại điểm \(x = 2\) là:

\(y = y'\left( 2 \right)\left( {x - 2} \right) + y\left( 2 \right) = 4\left( {x - 2} \right) + 1 = 4x - 7\)

Tiếp tuyến của đồ thị hàm số tại điểm \(x = \frac{{ - 2}}{3}\) là:

\(y = y'\left( {\frac{{ - 2}}{3}} \right)\left( {x + \frac{2}{3}} \right) + y\left( {\frac{{ - 2}}{3}} \right) = 4\left( {x + \frac{2}{3}} \right) + \frac{{ - 5}}{{27}} = 4x + \frac{{67}}{{27}}\)

c) Tiếp tuyến đi qua điểm A(0;1) tại điểm \({x_0}\) có phương trình là:

\(y - y\left( {{x_0}} \right) = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) \Leftrightarrow y = \left( {3x_0^2 - 4{x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 2x_0^2 + 1\)

Vì tiếp tuyến đi qua điểm A(0;1) nên:

\(1 = \left( {3x_0^2 - 4{x_0}} \right)\left( {0 - {x_0}} \right) + x_0^3 - 2x_0^2 + 1\)\( \Leftrightarrow - 3x_0^3 + 4x_0^2 + x_0^3 - 2x_0^2 = 0\)

\( \Leftrightarrow - 2x_0^3 + 2x_0^2 = 0 \Leftrightarrow 2x_0^2\left( {{x_0} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} = 0\end{array} \right.\)

Với \({x_0} = 1\) thì \(y'\left( 1 \right) = {3.1^2} - 4.1 = - 1,y\left( 1 \right) = 0\). Khi đó, tiếp tuyến của (C) cần tìm là: \(y = y'\left( 1 \right).\left( {x - 1} \right) + y\left( 1 \right) = \left( { - 1} \right)\left( {x - 1} \right) + 0 = - x + 1\)

Với \({x_0} = 0\) thì \(f'\left( 0 \right) = {3.0^2} - 4.0 = 0,f\left( 0 \right) = 1\). Khi đó, tiếp tuyến của (C) cần tìm là: \(y = y'\left( 0 \right).\left( {x - 0} \right) + y\left( 0 \right) = 0\left( {x - 0} \right) + 1 = 1\)

Giải bài 4 trang 39 SBT Toán 11 Chân trời sáng tạo tập 2: Tổng quan và Phương pháp giải

Bài 4 trang 39 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các phép biến đổi lượng giác, tính chất của hàm số lượng giác và các công thức liên quan để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và rèn luyện kỹ năng giải bài tập là rất quan trọng để đạt kết quả tốt trong môn Toán.

Nội dung bài 4 trang 39 SBT Toán 11 Chân trời sáng tạo tập 2

Bài 4 thường bao gồm các dạng bài tập sau:

  • Chứng minh đẳng thức lượng giác: Yêu cầu học sinh chứng minh một đẳng thức lượng giác bằng cách biến đổi vế trái thành vế phải hoặc ngược lại.
  • Rút gọn biểu thức lượng giác: Yêu cầu học sinh rút gọn một biểu thức lượng giác phức tạp về dạng đơn giản nhất.
  • Giải phương trình lượng giác: Yêu cầu học sinh tìm nghiệm của một phương trình lượng giác.
  • Tìm giá trị lượng giác của một góc: Yêu cầu học sinh tính giá trị của sin, cos, tan, cot của một góc cho trước.

Lời giải chi tiết bài 4 trang 39 SBT Toán 11 Chân trời sáng tạo tập 2

Dưới đây là lời giải chi tiết cho từng phần của bài 4 trang 39 SBT Toán 11 Chân trời sáng tạo tập 2:

Câu a: (Ví dụ về một dạng bài tập chứng minh đẳng thức lượng giác)

Đề bài: Chứng minh rằng sin2x + cos2x = 1

Lời giải:

Ta có: sin2x + cos2x = (sin x)2 + (cos x)2. Theo định lý Pytago trong tam giác vuông, ta có: cạnh huyền2 = cạnh kề2 + cạnh đối2. Trong đường tròn lượng giác, sin x = cạnh đối/cạnh huyền và cos x = cạnh kề/cạnh huyền. Do đó, (sin x)2 + (cos x)2 = 1. Vậy, sin2x + cos2x = 1 (đpcm).

Câu b: (Ví dụ về một dạng bài tập rút gọn biểu thức lượng giác)

Đề bài: Rút gọn biểu thức: A = sin x + cos x

Lời giải:

Biểu thức A = sin x + cos x không thể rút gọn thêm được nữa. Đây là dạng biểu thức cơ bản.

Câu c: (Ví dụ về một dạng bài tập giải phương trình lượng giác)

Đề bài: Giải phương trình: cos x = 1/2

Lời giải:

Phương trình cos x = 1/2 có nghiệm là x = π/3 + k2π và x = -π/3 + k2π, với k là số nguyên.

Mẹo giải bài tập hàm số lượng giác

Để giải tốt các bài tập về hàm số lượng giác, bạn nên:

  • Nắm vững các công thức lượng giác cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.
  • Vẽ đường tròn lượng giác để hình dung rõ hơn về các giá trị lượng giác.

Tusach.vn – Nguồn tài liệu học Toán uy tín

Tusach.vn là website cung cấp đầy đủ các tài liệu học tập môn Toán, bao gồm:

  • Giải bài tập sách giáo khoa
  • Giải bài tập sách bài tập
  • Đề thi thử
  • Bài giảng video

Hãy truy cập tusach.vn để học Toán hiệu quả hơn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN