Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 1 trang 76 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất trong môn Toán.
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. a) \(BC \bot \left( {OAH} \right)\). b) H là trực tâm của \(\Delta ABC\). c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).
Đề bài
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Gọi H là hình chiếu của O trên mặt phẳng (ABC). Chứng minh rằng:
a) \(BC \bot \left( {OAH} \right)\).
b) H là trực tâm của \(\Delta ABC\).
c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về đường thẳng vuông góc với mặt phẳng:
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau trong \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
+ Nếu đường thẳng d vuông góc với mặt phẳng \(\left( \alpha \right)\) thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng \(\left( \alpha \right)\).
Lời giải chi tiết

a) Vì H là hình chiếu của O trên mặt phẳng (ABC) nên \(OH \bot \left( {ABC} \right) \Rightarrow OH \bot BC\)
Vì \(OA \bot OB,OA \bot OC \Rightarrow OA \bot \left( {BOC} \right) \Rightarrow OA \bot BC\)
Ta có: \(OA \bot BC,OH \bot BC \Rightarrow BC \bot \left( {OAH} \right)\)
b) Vì \(BC \bot \left( {OAH} \right)\) nên \(BC \bot AH\) (1)
Vì \(OH \bot \left( {ABC} \right) \Rightarrow OH \bot AC\)
Vì \(OA \bot OB,OB \bot OC \Rightarrow OB \bot \left( {AOC} \right) \Rightarrow OB \bot AC\)
Ta có: \(OB \bot AC,OH \bot AC \Rightarrow AC \bot \left( {OBH} \right) \Rightarrow AC \bot BH\) (2)
Mà H là giao điểm của BH và CH (3)
Từ (1), (2) và (3) ta có: H là trực tâm của \(\Delta ABC\).
c) Gọi D là giao điểm của AH và BC. Khi đó, \(OD \bot BC\)
Vì \(OA \bot \left( {BOC} \right) \Rightarrow OA \bot OD\)
Do đó, tam giác AOD vuông tại O. Mà OH là đường cao nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{D^2}}} + \frac{1}{{O{A^2}}}\)
Tam giác BOC vuông tại O, đường cao OD có: \(\frac{1}{{O{D^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)
Vậy \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\)
Bài 1 trang 76 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Bài 1 thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trước khi bắt đầu giải bài tập, bạn cần nắm vững các kiến thức cơ bản về đạo hàm và các quy tắc tính đạo hàm.
Giả sử hàm số f(x) = x2 + 2x - 1. Hãy tính f'(2).
Lời giải:
f'(x) = 2x + 2
f'(2) = 2(2) + 2 = 6
Giả sử hàm số g(x) = sin(x). Hãy tìm g'(x).
Lời giải:
g'(x) = cos(x)
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Đạo hàm là một khái niệm quan trọng trong toán học, có ứng dụng rộng rãi trong nhiều lĩnh vực khác nhau như vật lý, kinh tế, kỹ thuật,... Việc nắm vững kiến thức về đạo hàm sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả hơn.
Tusach.vn là website chuyên cung cấp lời giải bài tập, tài liệu học tập cho học sinh các cấp. Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, chính xác và dễ hiểu nhất. Hãy truy cập tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập của bạn!
| Chủ đề | Nội dung |
|---|---|
| Định nghĩa đạo hàm | Tỷ số giữa độ biến thiên của hàm số và độ biến thiên của đối số khi đối số tiến tới một giá trị xác định. |
| Quy tắc tính đạo hàm | Quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp,... |
| Nguồn: tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập