Chào mừng các em học sinh đến với lời giải chi tiết bài 3 trang 39 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải dễ hiểu và các kiến thức liên quan để giúp các em nắm vững nội dung bài học.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên (mathbb{R}).
Đề bài
Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên \(\mathbb{R}\).
a) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x + 2\;khi\;x \le 2\\\frac{1}{{x + 1}}\;\;\;\;\;\;\;\;khi\;x > 2\end{array} \right.\);
b) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 2x\;khi\;x \le 1\\\frac{2}{x} + 1\;\;\;\;\;khi\;x > 1\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về định nghĩa đạo hàm để xét tính liên tục và tính đạo hàm: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
Lời giải chi tiết
a) Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x + 1}} = \frac{1}{3} \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - x + 2} \right) = 4\) nên f(x) gián đoạn tại \(x = 2\). Do đó, f(x) không có giới hạn tại 2, không có đạo hàm tại 2.
b) Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{2}{x} + 1} \right) = 3;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 2x} \right) = 3;f\left( 1 \right) = 3\) nên \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\). Do đó, hàm số f(x) liên tục tại \(x = 1\).
Lại có: \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\frac{2}{x} + 1 - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} = - 2;\)
\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = 4\)
Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \ne \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)
Do đó, không tồn tại \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)
Vậy không tồn tại đạo hàm tại \(x = 1\)
Bài 3 trang 39 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đường thẳng và mặt phẳng trong không gian. Bài tập này tập trung vào việc vận dụng các kiến thức về vị trí tương đối giữa đường thẳng và mặt phẳng, góc giữa đường thẳng và mặt phẳng, và khoảng cách từ một điểm đến mặt phẳng.
Bài 3 bao gồm các dạng bài tập sau:
Dưới đây là hướng dẫn giải chi tiết từng bài tập trong bài 3 trang 39 sách bài tập Toán 11 Chân trời sáng tạo tập 2:
Đề bài: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Giải:
Đề bài: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = a√3, SA vuông góc với mặt phẳng (ABCD) và SA = a√3. Tính khoảng cách từ điểm C đến mặt phẳng (SAD).
Giải:
(Giải thích chi tiết các bước giải, bao gồm việc xác định hình chiếu của C lên mặt phẳng (SAD), sử dụng định lý Pitago và công thức tính khoảng cách)
Để giải tốt các bài tập về đường thẳng và mặt phẳng trong không gian, các em cần:
Tusach.vn là website cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm sách giáo khoa, sách bài tập, đề thi và lời giải chi tiết. Chúng tôi luôn cập nhật những tài liệu mới nhất và chất lượng nhất để hỗ trợ các em học tập tốt hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
| Chủ đề | Liên kết |
|---|---|
| Giải bài tập Toán 11 Chân trời sáng tạo tập 2 | https://tusach.vn/toan-11-chan-troi-sang-tao-tap-2 |
| Đề thi Toán 11 Chân trời sáng tạo | https://tusach.vn/de-thi-toan-11-chan-troi-sang-tao |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập