Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 68 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hình chóp tam giác S.ABC có tam giác ABC vuông cân tại B, \(AC = a\sqrt 2 \), mặt phẳng (SAC) vuông góc với mặt đáy (ABC).
Đề bài
Cho hình chóp tam giác S.ABC có tam giác ABC vuông cân tại B, \(AC = a\sqrt 2 \), mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng \({60^0}\). Tính theo a thể tích V của khối chóp S. ABC
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về thể tích hình chóp: Thể tích hình chóp bằng một phần ba diện tích đáy nhân với chiều cao: \(V = \frac{1}{3}S.h\)
Lời giải chi tiết

Trong mặt phẳng (SAC), vẽ \(SH \bot AC\left( {H \in AC} \right)\). Vì \(\left( {SAC} \right) \bot \left( {ABC} \right)\) và AC là giao tuyến của hai mặt phẳng (SAC) và (ABC) nên \(SH \bot \left( {ABC} \right)\).
Gọi I, K lần lượt là hình chiếu vuông góc của H lên AB và BC.
Khi đó, \(\left( {\left( {SAB} \right),\left( {ABC} \right)} \right) = \widehat {SIH} = {60^0}\), \(\left( {\left( {SBC} \right),\left( {ABC} \right)} \right) = \widehat {SKH} = {60^0}\)
Chứng minh được \(\Delta SHI = \Delta SHK\left( {cgv - gn} \right) \) \(\Rightarrow HI = HK\)
Tứ giác BIHK có: \(\widehat {IBK} = \widehat {BKH} = \widehat {BIH} = {90^0}\) và \(HI = HK\) nên tứ giác BIHK là hình vuông. Suy ra, H là trung điểm của AC. Khi đó, tứ giác BIHK là hình vuông cạnh \(\frac{a}{2}\).
Tam giác SHI vuông tại H nên \(SH = HI.\tan \widehat {SIH} = \frac{{a\sqrt 3 }}{2}\)
Do đó, thể tích V của khối chóp S.ABC là: \(V = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{1}{3}.\frac{{{a^2}}}{2}.\frac{{a\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{{12}}\)
Bài 5 trang 68 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài tập 5 thường bao gồm các dạng câu hỏi sau:
Để giải bài 5 trang 68 một cách hiệu quả, bạn cần:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 5 trang 68:
Cho hàm số f(x) = x3 + 2x2 - 5x + 1. Tính f'(x).
Lời giải:
f'(x) = 3x2 + 4x - 5
Cho hàm số g(x) = sin(x) * cos(x). Tính g'(x).
Lời giải:
g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)
Để tiết kiệm thời gian và nâng cao hiệu quả giải bài tập, bạn có thể áp dụng một số mẹo sau:
Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên, bạn đã có thể tự tin giải bài 5 trang 68 Sách bài tập Toán 11 Chân trời sáng tạo tập 2. Đừng quên luyện tập thường xuyên để nắm vững kiến thức và đạt kết quả tốt nhất trong các kỳ thi.
Nếu bạn có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập