Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Thầy giáo thống kê lại số lần kéo xà đơn của các học sinh nam khối 11 ở bảng sau: a) Hãy ước lượng số trung bình, mốt và trung vị của mẫu số liệu ghép nhóm trên. b) Thầy giáo dự định chọn 25% học sinh có số lần kéo thấp nhất để bồi dưỡng thể lực thêm. Thầy giáo nên chọn học sinh có thành tích kéo xà đơn dưới bao nhiêu lần để bồi dưỡng thể lực?
Đề bài
Thầy giáo thống kê lại số lần kéo xà đơn của các học sinh nam khối 11 ở bảng sau:

a) Hãy ước lượng số trung bình, mốt và trung vị của mẫu số liệu ghép nhóm trên.
b) Thầy giáo dự định chọn 25% học sinh có số lần kéo thấp nhất để bồi dưỡng thể lực thêm. Thầy giáo nên chọn học sinh có thành tích kéo xà đơn dưới bao nhiêu lần để bồi dưỡng thể lực?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:
Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).
+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:
Gọi n là cỡ mẫu.
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,
\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).
+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.
b) Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)
Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
Lời giải chi tiết
Ta hiệu chỉnh lại bảng số liệu bao gồm giá trị đại diện:

Cỡ mẫu \(n = 143\)
Số trung bình của mẫu số liệu là: \(\overline x = \frac{{8.35 + 13.54 + 18.32 + 23.17 + 28.5}}{{143}} = \frac{{2\;089}}{{143}}\)
Nhóm chứa mốt của mẫu số liệu là \(\left[ {10,5;15,5} \right)\).
Do đó, \({u_m} = 10,5,{u_{m + 1}} = 15,5,{n_m} = 54,{n_{m - 1}} = 35,{n_{m + 1}} = 32,{u_{m + 1}} - {u_m} = 15,5 - 10,5 = 5\)
Mốt của mẫu số liệu là: \({M_O} = 10,5 + \frac{{54 - 35}}{{\left( {54 - 35} \right) + \left( {54 - 32} \right)}}.5 = \frac{{1051}}{{82}}\).
Gọi \({x_1},{x_2},...,{x_{143}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_{35}} \in \left[ {5,5;10,5} \right),{x_{36}},...,{x_{89}} \in \left[ {10,5;15,5} \right),{x_{90}},...,{x_{121}} \in \left[ {15,5;20,5} \right),\)\({x_{122}},...,{x_{138}} \in \left[ {20,5;25,5} \right),{x_{139}},...,{x_{143}} \in \left[ {25,5;30,5} \right)\)
Do cỡ mẫu \(n = 143\) nên trung vị \({M_e} = {x_{72}} \in \left[ {10,5;15,5} \right)\) nên trung vị của mẫu số liệu là:
\({M_e} = 10,5 + \frac{{\frac{{143}}{2} - 35}}{{54}}.\left( {15,5 - 10,5} \right) = \frac{{1499}}{{108}}\)
b) Do cỡ mẫu \(n = 143\) nên tứ phân vị thứ nhất của mẫu số liệu là \({x_{36}}\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {10,5;15,5} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 10,5 + \frac{{\frac{{143}}{4} - \left( {35 + 0} \right)}}{{54}}.\left( {15,5 - 10,5} \right) = \frac{{761}}{{72}} \approx 10,57\)
Vậy giáo viên nên chọn các bạn có thành tích kéo xà dưới 11 lần để bồi dưỡng thể lực thêm.
Bài 4 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng phần của bài 4:
Cho hàm số f(x) = x2 + 2x + 1. Tính f'(2).
Giải:
f'(x) = 2x + 2
f'(2) = 2 * 2 + 2 = 6
Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).
Giải:
g'(x) = cos(x) - sin(x)
Để giải tốt các bài tập về đạo hàm, các em nên:
Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những lời khuyên trên, các em sẽ tự tin hơn khi giải bài 4 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Chúc các em học tập tốt!
| Công thức đạo hàm | Ví dụ |
|---|---|
| (xn)' = nxn-1 | (x3)' = 3x2 |
| (sin x)' = cos x | (sin x)' = cos x |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập