Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 133 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 trên tusach.vn. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và nhanh chóng nhất để hỗ trợ các em trong quá trình học tập.
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a và tam giác SAB đều. Gọi M là điểm thuộc cạnh BC sao cho \(BM = x\left( {0 < x < a} \right)\), mặt phẳng \(\left( \alpha \right)\) đi qua M song song với hai đường thẳng SA và AB. a) Xác định giao tuyến của mặt phẳng \(\left( \alpha \right)\) với các mặt của hình chóp. b) Tính diện tích hình tạo bởi các đoạn giao tuyến ở câu a theo a và x.
Đề bài
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a và tam giác SAB đều. Gọi M là điểm thuộc cạnh BC sao cho \(BM = x\left( {0 < x < a} \right)\), mặt phẳng \(\left( \alpha \right)\) đi qua M song song với hai đường thẳng SA và AB.
a) Xác định giao tuyến của mặt phẳng \(\left( \alpha \right)\) với các mặt của hình chóp.
b) Tính diện tích hình tạo bởi các đoạn giao tuyến ở câu a theo a và x.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất cơ bản về hai đường thẳng song song để tìm giao tuyến: Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì giao tuyến của chúng (nếu có) song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Lời giải chi tiết

a) Trong mặt phẳng (ABCD), kẻ MN//AB//CD (N thuộc AD)
Trong mặt phẳng (SAD), kẻ đường thẳng d đi qua S và song song với AD. Qua N kẻ đường thẳng song song với SA cắt d tại O.
Gọi P là giao điểm của NO và SD, Q là giao điểm của MO và SC.
Khi đó, \(\left( \alpha \right)\) là mặt phẳng (OMN).
Ta có:
\(\left( \alpha \right) \cap \left( {ABCD} \right) = MN,\left( \alpha \right) \cap \left( {SBC} \right) = MQ,\left( \alpha \right) \cap \left( {SCD} \right) = PQ,\left( \alpha \right) \cap \left( {ASD} \right) = PN.\)
b) Các giao tuyến của mặt phẳng \(\left( \alpha \right)\) với các mặt của hình chóp tạo thành tứ giác MNPQ.
Vì CD//MN//PQ nên tứ giác MNPQ là hình thang với \(MN = AB = a,\widehat {QMN} = \widehat {SBA} = {60^0}\)
Trong tam giác SBC có MQ//SB nên theo hệ quả định lí Thalès ta có: \(\frac{{MQ}}{{SB}} = \frac{{MC}}{{BC}}\)
Mà \(SB = BC \Rightarrow MQ = MC = a - x\)
Trong tam giác SDC có PQ//CD nên theo hệ quả định lí Thalès ta có: \(\frac{{PQ}}{{CD}} = \frac{{SQ}}{{SC}}\)
Trong tam giác SBC có MQ//SB nên theo định lí Thalès ta có: \(\frac{{SQ}}{{SC}} = \frac{{MB}}{{BC}}\)
Do đó, \(\frac{{PQ}}{{CD}} = \frac{{BM}}{{BC}}\), mà \(CD = BC \Rightarrow QP = BM = x\)
Qua Q kẻ đường thẳng vuông góc với MN cắt MN tại H.
Ta có: \(\widehat {SBA} = \widehat {HMQ} = {60^0}\)
Khi đó, \(QH = MQ.\sin \widehat {QMH} = MQ.\sin {60^0} = \frac{{\left( {a - x} \right)\sqrt 3 }}{2}\)
Vậy diện tích hình thang MNPQ là: \(S = \frac{1}{2}QH\left( {MN + PQ} \right) = \frac{1}{2}.\frac{{\left( {a - x} \right)\sqrt 3 }}{2}\left( {a + x} \right) = \frac{{\left( {{a^2} - {x^2}} \right)\sqrt 3 }}{4}\) (đvdt)
Bài 4 trang 133 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản, đặc biệt là đạo hàm của tổng, hiệu, tích, thương của các hàm số, cũng như đạo hàm của hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 4 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 4 trang 133 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1:
Đề bài: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1
Lời giải:
f'(x) = 3x2 + 4x - 5
Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1)(x - 2)
Lời giải:
g'(x) = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
Đề bài: Tính đạo hàm của hàm số h(x) = sin(2x)
Lời giải:
h'(x) = cos(2x) * 2 = 2cos(2x)
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 11. Chúng tôi luôn cập nhật những nội dung mới nhất và hỗ trợ học sinh tối đa trong quá trình học tập. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Quy tắc | Công thức |
|---|---|
| Đạo hàm của hằng số | (c)' = 0 |
| Đạo hàm của xn | (xn)' = nxn-1 |
| Đạo hàm của tổng/hiệu | (u ± v)' = u' ± v' |
| Bảng tổng hợp một số quy tắc đạo hàm cơ bản | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập