Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 127 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Cho hình chóp S. ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của các SA và CD. a) Chứng minh (OMN)//(SBC). b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF//(SBD).
Đề bài
Cho hình chóp S. ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của các SA và CD.
a) Chứng minh (OMN)//(SBC).
b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF//(SBD).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về điều kiện để hai mặt phẳng song song để chứng minh: Nếu mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng (Q) thì (P) song song với (Q).
Lời giải chi tiết

a) Vì ABCD là hình bình hành tâm O nên O là trung điểm của AC, BD.
Vì M, O lần lượt là trung điểm của SA và AC nên MO là đường trung bình của tam giác SAC, suy ra MO//SC. Mà \(SC \subset \left( {SBC} \right)\), MO không nằm trong mặt phẳng (SBC) nên MO//(SBC)
Vì N, O lần lượt là trung điểm của CD và BD nên NO là đường trung bình của tam giác BCD, suy ra NO//BC. Mà \(BC \subset \left( {SBC} \right)\), NO không nằm trong mặt phẳng (SBC) nên NO//(SBC).
Vì MO//(SBC), NO//(SBC), NO và MO cắt nhau tại O và nằm trong mặt phẳng (MNO) nên (OMN)//(SBC).
b) Đề sai vì EF nằm trong mặt phẳng (SBD) rồi nên EF không song song với mặt phẳng (SBD).
Bài 2 trang 127 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản, bao gồm đạo hàm của hàm số đơn thức, đa thức, và các hàm số hợp. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn, và ứng dụng của đạo hàm trong các lĩnh vực khác.
Bài 2 thường bao gồm các dạng bài tập sau:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x4 - 2x2 + 5x - 1
Lời giải:
Áp dụng quy tắc đạo hàm của hàm số đa thức, ta có:
f'(x) = 12x3 - 4x + 5
Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1)(x - 2)
Lời giải:
Có thể giải bằng hai cách:
g(x) = x3 - 2x2 + x - 2
g'(x) = 3x2 - 4x + 1
g'(x) = (x2 + 1)'(x - 2) + (x2 + 1)(x - 2)'
g'(x) = 2x(x - 2) + (x2 + 1)(1)
g'(x) = 2x2 - 4x + x2 + 1
g'(x) = 3x2 - 4x + 1
Để giải bài tập đạo hàm một cách hiệu quả, các em cần:
Tusach.vn tự hào là một trong những trang web cung cấp tài liệu học tập và giải bài tập uy tín, chất lượng. Chúng tôi luôn cập nhật những lời giải chi tiết, dễ hiểu, và phù hợp với chương trình học của Bộ Giáo dục và Đào tạo. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác và cùng chúng tôi chinh phục những thử thách trong học tập!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập