1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 38 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 38 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Cho parabol (P) có phương trình (y = {x^2}). Tìm hệ số góc của tiếp tuyến của parabol (P)

Đề bài

Cho parabol (P) có phương trình \(y = {x^2}\). Tìm hệ số góc của tiếp tuyến của parabol (P)

a) Tại điểm \(\left( { - 1;1} \right)\);

b) Tại giao điểm của (P) với đường thẳng \(y = - 3x + 2\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).

Tiếp tuyến \({M_0}T\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

Lời giải chi tiết

Với \({x_0}\) bất kì ta có:

\(y'\left( {{x_0}} \right) \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + {x_0}} \right) = 2{x_0}\)

Do đó, \(y' = 2x\)

a) Hệ số góc của tiếp tuyến của parabol (P) tại điểm \(\left( { - 1;1} \right)\) là: \(y'\left( { - 1} \right) = 2.\left( { - 1} \right) = - 2\)

b) Hoành độ giao điểm của (P) với đường thẳng \(y = - 3x + 2\) là nghiệm của phương trình: \({x^2} = - 3x + 2 \) \( \Leftrightarrow {x^2} + 3x - 2 = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 3 + \sqrt {17} }}{2}\\x = \frac{{ - 3 - \sqrt {17} }}{2}\end{array} \right.\)

Do đó, \(k = y'\left( {\frac{{ - 3 + \sqrt {17} }}{2}} \right) = - 3 + \sqrt {17}\), \(k = y'\left( {\frac{{ - 3 - \sqrt {17} }}{2}} \right) = - 3 - \sqrt {17} \)

Vậy hệ số góc tại giao điểm của (P) với đường thẳng \(y = - 3x + 2\) là: \(k = - 3 + \sqrt {17} ;k = - 3 - \sqrt {17} \)

Giải bài 2 trang 38 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan và Hướng dẫn chi tiết

Bài 2 trang 38 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm cơ bản để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức lý thuyết và kỹ năng tính toán là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài 2 trang 38 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Bài 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số đơn thức: Áp dụng công thức đạo hàm của hàm số lũy thừa.
  • Tính đạo hàm của hàm số đa thức: Sử dụng quy tắc đạo hàm của tổng và hiệu, kết hợp với đạo hàm của hàm số đơn thức.
  • Tính đạo hàm của hàm số lượng giác: Vận dụng các công thức đạo hàm của sinx, cosx, tanx, cotx.
  • Tính đạo hàm của hàm hợp: Sử dụng quy tắc đạo hàm của hàm hợp.

Lời giải chi tiết bài 2 trang 38 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Dưới đây là lời giải chi tiết cho từng phần của bài 2:

Câu a)

Đề bài: Tính đạo hàm của hàm số f(x) = 3x4 - 2x2 + 5

Lời giải:

f'(x) = 3 * 4x3 - 2 * 2x + 0 = 12x3 - 4x

Câu b)

Đề bài: Tính đạo hàm của hàm số g(x) = sin(2x) + cos(x)

Lời giải:

g'(x) = cos(2x) * 2 - sin(x) = 2cos(2x) - sin(x)

Câu c)

Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1)3

Lời giải:

h'(x) = 3 * (x2 + 1)2 * 2x = 6x(x2 + 1)2

Mẹo giải nhanh và hiệu quả

Để giải nhanh và hiệu quả các bài tập về đạo hàm, các em cần:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng quy tắc đạo hàm của hàm hợp một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi tính toán.

Tài liệu tham khảo thêm

Các em có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về đạo hàm:

  • Sách giáo khoa Toán 11
  • Sách bài tập Toán 11
  • Các trang web học toán trực tuyến uy tín

Kết luận

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em đã hiểu rõ cách giải bài 2 trang 38 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với Tusach.vn để được hỗ trợ nhé!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN