Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ hướng dẫn bạn giải bài 5 trang 84 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hai hàm số f(x) và g(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7\). Tìm \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}}\)
Đề bài
Cho hai hàm số f(x) và g(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7\). Tìm \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}}\)
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\)
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to + \infty } c = c\) (với c là hằng số)
Lời giải chi tiết
Ta có: \(g\left( x \right) = \frac{1}{2}\left\{ {\left[ {f\left( x \right) + 2g\left( x \right)} \right] - f\left( x \right)} \right\}\)
Do đó, \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{1}{2}\left\{ {\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] - \mathop {\lim }\limits_{x \to + \infty } f\left( x \right)} \right\} = \frac{1}{2}\left( {7 - 3} \right) = 2\)
Suy ra: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}} = \frac{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}}{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) - \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}} = \frac{{2.3 + 2}}{{2.3 - 2}} = 2\)
Bài 5 trang 84 Sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc vận dụng các kiến thức về đồ thị hàm số lượng giác, tính chất của hàm số, và các phép biến đổi đồ thị để giải quyết các bài toán cụ thể.
Bài tập 5 thường bao gồm các dạng câu hỏi sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. Dưới đây là lời giải mẫu:
Đề bài: Xác định tập xác định của hàm số y = tan(2x + π/3).
Lời giải: Hàm số y = tan(2x + π/3) xác định khi và chỉ khi 2x + π/3 ≠ π/2 + kπ, với k là số nguyên. Từ đó, ta có:
2x ≠ π/2 + kπ - π/3 = π/6 + kπ
x ≠ π/12 + kπ/2, với k là số nguyên.
Vậy tập xác định của hàm số là D = R \ {π/12 + kπ/2 | k ∈ Z}.
Đề bài: Vẽ đồ thị hàm số y = 2sin(x - π/4).
Lời giải:
Để giải tốt các bài tập về hàm số lượng giác, bạn nên:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn đã có thể tự tin giải bài 5 trang 84 Sách bài tập Toán 11 Chân trời sáng tạo tập 1. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập