Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 112 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.
Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho \(EB > AE,AF > FC,BG > GD\). Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).
Đề bài
Cho tứ diện ABCD. Trên các cạnh AB, AC, BD lần lượt lấy các điểm E, F, G sao cho \(EB > AE,AF > FC,BG > GD\). Tìm giao tuyến của các cặp mặt phẳng (EFG) và (ACD), (EFG) và (BCD), (EFG) và (ABD).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giao tuyến giữa hai mặt phẳng để tìm giao tuyến: Đường thẳng d chung giữa hai mặt phẳng (P) và (Q) được gọi là giao tuyến của (P) và (Q), kí hiệu \(d = \left( P \right) \cap \left( Q \right)\).
Lời giải chi tiết

Ta có, EF là giao tuyến của hai mặt phẳng (EFG) và (ABC).
Trong mặt phẳng (ABC), gọi I là giao điểm của EF và BC.
Trong mặt phẳng (BCD), gọi H là giao điểm của IG và CD.
Vì \(\left\{ \begin{array}{l}H \in CD \subset \left( {ACD} \right),H \in IG \subset \left( {EFG} \right)\\F \in AC \subset \left( {ACD} \right),F \in FE \subset \left( {EFG} \right)\end{array} \right.\) nên giao tuyến của hai mặt phẳng (EFG) và (ACD) là FH.
Vì \(\left\{ \begin{array}{l}H \in CD \subset \left( {BCD} \right),H \in IG \subset \left( {EFG} \right)\\G \in BD \subset \left( {BCD} \right),G \in FG \subset \left( {EFG} \right)\end{array} \right.\) nên giao tuyến của hai mặt phẳng (EFG) và (BCD) là GH.
Vì \(\left\{ \begin{array}{l}E \in AB \subset \left( {ABD} \right),E \in FE \subset \left( {EFG} \right)\\G \in BD \subset \left( {ABD} \right),G \in FG \subset \left( {EFG} \right)\end{array} \right.\) nên giao tuyến của hai mặt phẳng (EFG) và (ABD) là GE.
Bài 4 trang 112 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về phép biến hình. Bài tập này yêu cầu học sinh vận dụng kiến thức về phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Việc nắm vững các khái niệm và tính chất của các phép biến hình là vô cùng quan trọng để giải quyết bài toán này một cách hiệu quả.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giúp các em hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng phần của bài 4:
(Giả sử đề bài là tìm ảnh của điểm A(1;2) qua phép tịnh tiến theo vector v = (3;-1))
Lời giải:
Gọi A'(x'; y') là ảnh của A qua phép tịnh tiến theo vector v. Khi đó:
Vậy A'(4;1).
(Giả sử đề bài là tìm tâm quay và góc quay của phép quay biến điểm A(0;1) thành điểm A'(-1;0))
Lời giải:
Gọi I(x;y) là tâm quay và φ là góc quay. Ta có:
IA = IA' và góc AIA' = φ
Giải hệ phương trình để tìm x, y và φ.
Ngoài sách giáo khoa và sách bài tập, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những mẹo giải bài tập trên, các em sẽ tự tin hơn khi giải bài 4 trang 112 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Chúc các em học tốt và đạt kết quả cao trong môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập