1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 1 trang 26 SBT Toán 11 Chân trời sáng tạo tập 1

Chào mừng các em học sinh đến với lời giải chi tiết bài 1 trang 26 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và tự tin làm bài tập.

tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.

Tìm tập xác định của các hàm số sau: a) \(y = - \frac{2}{{\sin 3x}}\); b) \(y = \tan \left( {\frac{x}{2} - \frac{\pi }{6}} \right)\); c) \(y = \cot \left( {2x - \frac{\pi }{4}} \right)\); d) \(y = \frac{1}{{3 - {{\cos }^2}x}}\).

Đề bài

Tìm tập xác định của các hàm số sau:

a) \(y = - \frac{2}{{\sin 3x}}\);

b) \(y = \tan \left( {\frac{x}{2} - \frac{\pi }{6}} \right)\);

c) \(y = \cot \left( {2x - \frac{\pi }{4}} \right)\);

d) \(y = \frac{1}{{3 - {{\cos }^2}x}}\).

Phương pháp giải - Xem chi tiếtGiải bài 1 trang 26 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về tập xác định của hàm số để tìm tập xác định của hàm số:

a, d) Hàm phân thức xác định khi mẫu thức khác 0.

b) Hàm số \(y = \tan x\) xác định khi \(\cos x \ne 0\)

c) Hàm số \(y = \cot x\) xác định khi \(\sin x \ne 0\)

Lời giải chi tiết

a) Hàm số \(y = - \frac{2}{{\sin 3x}}\) xác định khi \(\sin 3x \ne 0\), tức là \(3x \ne k\pi \left( {k \in \mathbb{Z}} \right)\) hay \(x \ne \frac{{k\pi }}{3}\left( {k \in \mathbb{Z}} \right)\)

Vậy tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ {\frac{{k\pi }}{3}\left| {k \in \mathbb{Z}} \right.} \right\}\)

b) Hàm số \(y = \tan \left( {\frac{x}{2} - \frac{\pi }{6}} \right)\) xác định khi \(\cos \left( {\frac{x}{2} - \frac{\pi }{6}} \right) \ne 0\), tức là \(\frac{x}{2} - \frac{\pi }{6} \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\) hay \(x \ne \frac{{4\pi }}{3} + k2\pi \left( {k \in \mathbb{Z}} \right)\)

Vậy tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ {\frac{{4\pi }}{3} + k2\pi \left| {k \in \mathbb{Z}} \right.} \right\}\)

c) Hàm số \(y = \cot \left( {2x - \frac{\pi }{4}} \right)\) xác định khi \(\sin \left( {2x - \frac{\pi }{4}} \right) \ne 0\), tức là \(2x - \frac{\pi }{4} \ne k\pi \left( {k \in \mathbb{Z}} \right)\) hay \(x \ne \frac{\pi }{8} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)

Vậy tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{8} + \frac{{k\pi }}{2}\left| {k \in \mathbb{Z}} \right.} \right\}\)

d) Hàm số \(y = \frac{1}{{3 - {{\cos }^2}x}}\) xác định khi \(3 - {\cos ^2}x \ne 0\), hay \({\cos ^2}x \ne 3\).

Vì \( - 1 \le \cos x \le 1 \Rightarrow {\cos ^2}x \ne 3\) với mọi \(x \in \mathbb{R}\)

Vậy tập xác định của hàm số là \(\mathbb{R}\).

Giải bài 1 trang 26 SBT Toán 11 Chân trời sáng tạo tập 1: Tổng quan

Bài 1 trang 26 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Bài tập này yêu cầu học sinh vận dụng kiến thức về parabol, đỉnh của parabol, trục đối xứng và các điểm đặc biệt của hàm số để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 1 trang 26 SBT Toán 11 Chân trời sáng tạo tập 1

Bài 1 bao gồm các câu hỏi nhỏ, yêu cầu học sinh:

  • Xác định các hệ số a, b, c của hàm số bậc hai.
  • Tìm tọa độ đỉnh của parabol.
  • Xác định trục đối xứng của parabol.
  • Tìm các điểm mà parabol cắt trục hoành (nếu có).
  • Vẽ đồ thị hàm số.

Lời giải chi tiết bài 1 trang 26 SBT Toán 11 Chân trời sáng tạo tập 1

Để giải bài 1 trang 26 SBT Toán 11 Chân trời sáng tạo tập 1, các em cần nắm vững các công thức và phương pháp sau:

  1. Hàm số bậc hai: y = ax2 + bx + c (a ≠ 0)
  2. Tọa độ đỉnh của parabol: xđỉnh = -b/2a; yđỉnh = -Δ/4a (với Δ = b2 - 4ac)
  3. Trục đối xứng của parabol: x = -b/2a
  4. Nghiệm của phương trình bậc hai: Δ > 0: hai nghiệm phân biệt; Δ = 0: một nghiệm kép; Δ < 0: vô nghiệm

Ví dụ: Xét hàm số y = x2 - 4x + 3

  • a = 1, b = -4, c = 3
  • xđỉnh = -(-4)/(2*1) = 2
  • yđỉnh = -( (-4)2 - 4*1*3 ) / (4*1) = - (16 - 12) / 4 = -1
  • Trục đối xứng: x = 2
  • Δ = (-4)2 - 4*1*3 = 4 > 0, parabol cắt trục hoành tại hai điểm.

Mẹo giải bài tập hàm số bậc hai

  • Nắm vững các công thức và định nghĩa liên quan đến hàm số bậc hai.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để tính toán nhanh chóng và chính xác.
  • Vẽ đồ thị hàm số để hình dung rõ hơn về tính chất của hàm số.

Tại sao nên chọn tusach.vn để giải bài tập Toán 11?

tusach.vn cung cấp:

  • Lời giải chi tiết, dễ hiểu, được trình bày rõ ràng.
  • Đội ngũ giáo viên giàu kinh nghiệm, chuyên môn cao.
  • Cập nhật liên tục các bài giải mới nhất.
  • Giao diện thân thiện, dễ sử dụng.
  • Hỗ trợ học sinh 24/7.

Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Bảng tổng hợp các công thức quan trọng

Công thứcMô tả
y = ax2 + bx + cHàm số bậc hai
xđỉnh = -b/2aHoành độ đỉnh
yđỉnh = -Δ/4aTung độ đỉnh
Δ = b2 - 4acBiệt thức

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN