Chào mừng bạn đến với lời giải chi tiết bài 1 trang 30 sách bài tập Toán 11 Chân trời sáng tạo tập 1 trên tusach.vn. Bài viết này sẽ cung cấp phương pháp giải, đáp án chính xác và giải thích rõ ràng từng bước để giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hữu ích và dễ tiếp cận nhất cho học sinh.
Giải các phương trình lượng giác sau: a) \(\sin \left( {3x + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\); b) \(\cos \left( {2x - {{30}^0}} \right) = - 1\);
Đề bài
Giải các phương trình lượng giác sau:
a) \(\sin \left( {3x + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\);
b) \(\cos \left( {2x - {{30}^0}} \right) = - 1\);
c) \(3\sin \left( { - 2x + {{17}^0}} \right) = 4\);
d) \(\cos \left( {3x - \frac{{7\pi }}{{12}}} \right) = \cos \left( { - x + \frac{\pi }{4}} \right)\);
e) \(\sqrt 3 \tan \left( {x - \frac{\pi }{4}} \right) - 1 = 0\);
g) \(\cot \left( {\frac{x}{3} + \frac{{2\pi }}{5}} \right) = \cot \frac{\pi }{5}\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình lượng giác cơ bản để giải phương trình:
a, c) Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).
Đặc biệt: \(\sin u = \sin v \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)
\(\sin u = \sin {a^0} \Leftrightarrow u = {a^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\) hoặc \(u = {180^0} - {a^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\)
b) \(\cos u = - 1 \Leftrightarrow u = \pi + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(\cos u = - 1 \Leftrightarrow u = {180^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\)
d) Phương trình \(\cos x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ {0;\pi } \right]\) sao cho \(\cos \alpha = m\).
Đặc biệt: \(\cos u = \cos v \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)
\(\cos u = \cos {a^0} \Leftrightarrow u = {a^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\) hoặc \(u = - {a^0} + k{360^0}\left( {k \in \mathbb{Z}} \right)\)
e) Với mọi số thực m, phương trình \(\tan x = m\) có nghiệm \(x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho \(\tan \alpha = m\).
g) Với mọi số thực m, phương trình \(\cot x = m\) có nghiệm \(x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left( {0;\pi } \right)\) sao cho \(\cot \alpha = m\).
Lời giải chi tiết
a) \(\sin \left( {3x + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {3x + \frac{\pi }{6}} \right) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{6} = \frac{\pi }{3} + k2\pi \\3x + \frac{\pi }{6} = \pi - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{18}} + \frac{{k2\pi }}{3}\\x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình đã cho có nghiệm \(x = \frac{\pi }{{18}} + \frac{{k2\pi }}{3}\left( {k \in \mathbb{Z}} \right);x = \frac{\pi }{6} + \frac{{k2\pi }}{3}\left( {k \in \mathbb{Z}} \right)\)
b) \(\cos \left( {2x - {{30}^0}} \right) = - 1 \Leftrightarrow 2x - {30^0} = {180^0} + k{360^0}\left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = {105^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình đã cho có nghiệm \(x = {105^0} + k{180^0}\left( {k \in \mathbb{Z}} \right)\)
c) \(3\sin \left( { - 2x + {{17}^0}} \right) = 4 \Leftrightarrow \sin \left( { - 2x + {{17}^0}} \right) = \frac{4}{3}\)
Vì \(\sin \left( { - 2x + {{17}^0}} \right) < 1\) với mọi số thực x nên phương trình đã cho vô nghiệm.
d) \(\cos \left( {3x - \frac{{7\pi }}{{12}}} \right) = \cos \left( { - x + \frac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}3x - \frac{{7\pi }}{{12}} = - x + \frac{\pi }{4} + k2\pi \\3x - \frac{{7\pi }}{{12}} = - \left( { - x + \frac{\pi }{4}} \right) + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{24}} + \frac{{k\pi }}{2}\\x = \frac{\pi }{6} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình đã cho có nghiệm \(x = \frac{{5\pi }}{{24}} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right);x = \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\)
e) \(\sqrt 3 \tan \left( {x - \frac{\pi }{4}} \right) - 1 = 0 \Leftrightarrow \tan \left( {x - \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{3} \Leftrightarrow \tan \left( {x - \frac{\pi }{4}} \right) = \tan \frac{\pi }{6}\)
\( \Leftrightarrow x - \frac{\pi }{4} = \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \frac{{5\pi }}{{12}} + k\pi \left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình đã cho có nghiệm \(x = \frac{{5\pi }}{{12}} + k\pi \left( {k \in \mathbb{Z}} \right)\)
g) \(\cot \left( {\frac{x}{3} + \frac{{2\pi }}{5}} \right) = \cot \frac{\pi }{5} \Leftrightarrow \frac{x}{3} + \frac{{2\pi }}{5} = \frac{\pi }{5} + k\pi \left( {k \in \mathbb{Z}} \right) \Leftrightarrow x = \frac{{ - 3\pi }}{5} + k3\pi \left( {k \in \mathbb{Z}} \right)\)
Vậy phương trình đã cho có nghiệm \(x = \frac{{ - 3\pi }}{5} + k3\pi \left( {k \in \mathbb{Z}} \right)\)
Bài 1 trang 30 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác và đồ thị. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về định nghĩa, tính chất của hàm số lượng giác, cách xác định tập xác định, tập giá trị, và vẽ đồ thị hàm số. Việc nắm vững các khái niệm này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 1 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 1 trang 30 SBT Toán 11 Chân trời sáng tạo tập 1:
...
...
...
Để giải tốt các bài tập về hàm số lượng giác, bạn nên:
Tusach.vn là website cung cấp lời giải bài tập Toán 11, Toán 12 và các môn học khác một cách nhanh chóng, chính xác và dễ hiểu. Chúng tôi luôn cập nhật những nội dung mới nhất và cung cấp nhiều tài liệu học tập hữu ích để giúp bạn học tập tốt hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập và lời giải bài tập hữu ích nhé!
| Hàm số | Tập xác định | Tập giá trị |
|---|---|---|
| y = sin(x) | R | [-1, 1] |
| y = cos(x) | R | [-1, 1] |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập