Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 1 trang 34, đồng thời cung cấp kiến thức nền tảng cần thiết để giải quyết các bài toán tương tự.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và dễ dàng tiếp cận nhất cho học sinh.
Cho \(\sin \alpha = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau: a) \(\sin 2\alpha \); b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\);
Đề bài
Cho \(\sin \alpha = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau:
a) \(\sin 2\alpha \);
b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\);
c) \[\tan \left( {2\alpha - \frac{\pi }{4}} \right)\].
Cho \(\sin \alpha = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \). Tính giá trị của các biểu thức sau:
a) \(\sin 2\alpha \);
b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right)\);
c) \(\tan \left( {2\alpha - \frac{\pi }{4}} \right)\).
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).
+ Sử dụng kiến thức về góc nhân đôi để tính \(\tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }};\sin 2\alpha = 2\sin \alpha \cos \alpha \)
+ Sử dụng kiến thức về công thức cộng để tính: \(\cos \left( {\alpha + \beta } \right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \); \(\tan \left( {\alpha - \beta } \right) = \frac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\)
Lời giải chi tiết
Vì \(\frac{\pi }{2} < \alpha < \pi \Rightarrow \cos \alpha < 0\)
Do đó, \(\cos \alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{3}{4}} \right)}^2}} = - \frac{{\sqrt 7 }}{4}\) a) \(\sin 2\alpha = 2\sin \alpha \cos \alpha = 2.\frac{3}{4}.\frac{{ - \sqrt 7 }}{4} = \frac{{ - 3\sqrt 7 }}{8}\);
b) \(\cos \left( {\alpha + \frac{\pi }{3}} \right) = \cos \alpha \cos \frac{\pi }{3} - \sin \alpha \sin \frac{\pi }{3} = \frac{{ - \sqrt 7 }}{4}.\frac{1}{2} - \frac{3}{4}.\frac{{\sqrt 3 }}{2} = \frac{{ - \sqrt 7 - 3\sqrt 3 }}{8}\);
c) \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{3}{4}}}{{\frac{{ - \sqrt 7 }}{4}}} = \frac{{ - 3\sqrt 7 }}{7}\), \(\tan 2\alpha = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} = 3\sqrt 7 \)
\(\tan \left( {2\alpha - \frac{\pi }{4}} \right) = \frac{{\tan 2\alpha - \tan \frac{\pi }{4}}}{{1 + \tan 2\alpha .\tan \frac{\pi }{4}}} = \frac{{3\sqrt 7 - 1}}{{1 + 3\sqrt 7 .1}} = \frac{{{{\left( {3\sqrt 7 - 1} \right)}^2}}}{{\left( {3\sqrt 7 - 1} \right)\left( {1 + 3\sqrt 7 } \right)}} = \frac{{32 - 3\sqrt 7 }}{{31}}\).
Bài 1 trang 34 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về định nghĩa, tính chất của hàm số lượng giác, đặc biệt là hàm sin, cosin, tang và cotang để giải quyết các bài toán thực tế. Việc nắm vững các công thức lượng giác cơ bản và kỹ năng biến đổi đại số là vô cùng quan trọng để hoàn thành bài tập này một cách hiệu quả.
Bài 1 thường bao gồm các dạng bài tập sau:
Bài 1: (Nội dung bài tập cụ thể sẽ được trình bày tại đây. Ví dụ: Cho hàm số y = sin(2x). Xác định tập xác định của hàm số.)
Lời giải:
Để giải các bài tập về hàm số lượng giác một cách hiệu quả, bạn nên:
Để củng cố kiến thức và kỹ năng giải bài tập, bạn có thể tham khảo các bài tập tương tự sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 1 trang 34 sách bài tập Toán 11 Chân trời sáng tạo tập 1 một cách hiệu quả. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
| Công thức lượng giác cơ bản | Mô tả |
|---|---|
| sin2(x) + cos2(x) = 1 | Định lý Pitago lượng giác |
| tan(x) = sin(x) / cos(x) | Định nghĩa hàm tang |
| cot(x) = cos(x) / sin(x) | Định nghĩa hàm cotang |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập