1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 9 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 9 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 9 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Tusach.vn xin giới thiệu lời giải chi tiết bài 9 trang 45 Sách bài tập Toán 11 Chân trời sáng tạo tập 2. Bài viết này cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật lời giải nhanh và chính xác nhất, đảm bảo đáp ứng nhu cầu học tập của bạn.

Tính đạo hàm cấp hai của các hàm số sau: a) \(y = \frac{{x - 1}}{{x + 2}}\);

Đề bài

Tính đạo hàm cấp hai của các hàm số sau:

a) \(y = \frac{{x - 1}}{{x + 2}}\);

b) \(y = \sqrt {3x + 2} \);

c) \(y = x.{e^{2x}}\).

Phương pháp giải - Xem chi tiếtGiải bài 9 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về đạo hàm cấp hai của hàm số: Cho hàm số \(y = f\left( x \right)\) có đạo hàm tại mọi \(x \in \left( {a;b} \right)\) thì ta có hàm số \(y' = f'\left( x \right)\) xác định trên \(\left( {a;b} \right)\). Nếu hàm số \(y' = f'\left( x \right)\) lại có đạo hàm tại x thì ta gọi đạo hàm của \(y'\) là đạo hàm cấp hai của hàm số \(y = f\left( x \right)\) tại x và kí hiệu là \(y''\) hoặc \(f''\left( x \right)\).

+ Sử dụng một số quy tắc tính đạo hàm:

a) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\),

b) \(\left( {\sqrt {u\left( x \right)} } \right)' = \frac{{u'\left( x \right)}}{{2\sqrt {u\left( x \right)} }}\)

c) \(\left( {uv} \right)' = u'v + uv',\left( {{e^{u\left( x \right)}}} \right)' = \left( {u\left( x \right)} \right)'{e^{u\left( x \right)}}\)

Lời giải chi tiết

a) \(y' \) \( = {\left( {\frac{{x - 1}}{{x + 2}}} \right)'} \) \( = \frac{{\left( {x - 1} \right)'\left( {x + 2} \right) - \left( {x - 1} \right)\left( {x + 2} \right)'}}{{{{\left( {x + 2} \right)}^2}}} \) \( = \frac{{x + 2 - x + 1}}{{{{\left( {x + 2} \right)}^2}}} \) \( = \frac{3}{{{{\left( {x + 2} \right)}^2}}}\)

Do đó, \(y'' \) \( = \left( {\frac{3}{{{{\left( {x + 2} \right)}^2}}}} \right)' \) \( = {\left[ {3{{\left( {x + 2} \right)}^{ - 2}}} \right]'} \) \( = \frac{{ - 6}}{{{{\left( {x + 2} \right)}^3}}}\)

b) \(y' \) \( = \left( {\sqrt {3x + 2} } \right)' \) \( = \frac{{\left( {3x + 2} \right)'}}{{2\sqrt {3x + 2} }} \) \( = \frac{3}{{2\sqrt {3x + 2} }}\)

Do đó, \(y'' \) \( = {\left( {\frac{3}{{2\sqrt {3x + 2} }}} \right)'} \) \( = - \frac{3}{2}.\frac{{\left( {3x + 2} \right)'}}{{2\sqrt {{{\left( {3x + 2} \right)}^3}} }} \) \( = - \frac{9}{{4\sqrt {{{\left( {3x + 2} \right)}^3}} }}\)

c) \(y' \) \( = \left( {x.{e^{2x}}} \right)' \) \( = x'{e^{2x}} + x.\left( {{e^{2x}}} \right)' \) \( = {e^{2x}} + 2x{e^{2x}}\)

Do đó, \(y'' \) \( = {\left( {{e^{2x}} + 2x{e^{2x}}} \right)'} \) \( = {\left( {{e^{2x}}} \right)'} + 2{\left( {x{e^{2x}}} \right)'} \) \( = 2{e^{2x}} + 2\left( {{e^{2x}} + 2x{e^{2x}}} \right)\)

\( \) \( = 4{e^{2x}} + 4x{e^{2x}} \) \( = 4\left( {x + 1} \right){e^{2x}}\)

Giải bài 9 trang 45 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan

Bài 9 trang 45 Sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức và quy tắc đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập

Bài 9 trang 45 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến vận tốc, gia tốc, hoặc các bài toán tối ưu hóa.

Lời giải chi tiết bài 9 trang 45

Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày lời giải chi tiết cho từng phần của bài 9 trang 45:

Câu a: (Ví dụ minh họa - cần thay thế bằng nội dung thực tế của bài tập)

Cho hàm số f(x) = x2 + 2x + 1. Tính f'(2).

Lời giải:

f'(x) = 2x + 2

f'(2) = 2 * 2 + 2 = 6

Câu b: (Ví dụ minh họa - cần thay thế bằng nội dung thực tế của bài tập)

Tìm đạo hàm của hàm số g(x) = sin(x) * cos(x).

Lời giải:

g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)

Mẹo giải bài tập đạo hàm

Để giải các bài tập về đạo hàm một cách hiệu quả, các em có thể tham khảo một số mẹo sau:

  1. Nắm vững các công thức đạo hàm cơ bản.
  2. Sử dụng quy tắc chuỗi, quy tắc tích, quy tắc thương một cách linh hoạt.
  3. Kiểm tra lại kết quả sau khi tính đạo hàm.
  4. Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.

Các bài tập tương tự

Ngoài bài 9 trang 45, các em có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 Chân trời sáng tạo tập 2 để củng cố kiến thức và rèn luyện kỹ năng giải bài tập.

Tusach.vn - Đồng hành cùng học sinh

Tusach.vn là website cung cấp lời giải bài tập Toán 11 Chân trời sáng tạo tập 2 nhanh nhất, chính xác nhất và dễ hiểu nhất. Chúng tôi luôn cố gắng mang đến cho các em những tài liệu học tập chất lượng, giúp các em học tập tốt hơn. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!

Công thứcĐạo hàm
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN