Bài 7 trang 15 SBT Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về hàm số và đồ thị. Bài tập này thường yêu cầu học sinh xác định tập xác định, tập giá trị, và vẽ đồ thị của hàm số.
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Rút gọn các biểu thức sau: a) \(\cos \left( {\alpha + \pi } \right) + \sin \left( {\alpha + \frac{{5\pi }}{2}} \right) - \tan \left( {\alpha + \frac{\pi }{2}} \right)\tan \left( {\pi - \alpha } \right)\).
Đề bài
Rút gọn các biểu thức sau:
a) \(\cos \left( {\alpha + \pi } \right) + \sin \left( {\alpha + \frac{{5\pi }}{2}} \right) - \tan \left( {\alpha + \frac{\pi }{2}} \right)\tan \left( {\pi - \alpha } \right)\).
b) \(\cos \left( {\frac{\pi }{2} - \alpha } \right)\sin \left( {\beta + \pi } \right) - \sin \left( {2\pi - \alpha } \right)\cos \left( {\beta - \frac{\pi }{2}} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giá trị lượng giác của các góc lượng giác có liên quan đặc biệt:
a) \(\cos \left( {\alpha + \pi } \right) = - \cos \alpha \), \(\sin \left( {\alpha + \pi } \right) = - \sin \alpha \), \(\sin \left( { - \alpha } \right) = - \sin \alpha \), \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \), \(\)
\(\tan \left( {\frac{\pi }{2} - \alpha } \right) = - \cot \alpha \), \(\tan \left( {\pi + \alpha } \right) = \tan \alpha \), \(\tan \left( { - \alpha } \right) = - \tan \alpha \)
b) \(\cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha \), \(\sin \left( {\alpha + \pi } \right) = - \sin \alpha \), \(\sin \left( {2\pi + \alpha } \right) = \sin \alpha \), \(\) \(\cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha \), \(\cos \left( { - \alpha } \right) = \cos \alpha \)
Lời giải chi tiết
a) \(\cos \left( {\alpha + \pi } \right) + \sin \left( {\alpha + \frac{{5\pi }}{2}} \right) - \tan \left( {\alpha + \frac{\pi }{2}} \right)\tan \left( {\pi - \alpha } \right)\)
\( \) \(= - \cos \alpha + \sin \left( {\alpha + 3\pi - \frac{\pi }{2}} \right) - \tan \left( {\alpha + \pi - \frac{\pi }{2}} \right)\left( { - \tan \alpha } \right)\)
\( \) \(= - \cos \alpha - \sin \left( {\alpha - \frac{\pi }{2}} \right) - \tan \left( {\alpha - \frac{\pi }{2}} \right)\left( { - \tan \alpha } \right)\)
\( \) \(= - \cos \alpha + \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cot \alpha \left( { - \tan \alpha } \right) \) \(= - \cos \alpha + \cos \alpha - 1 \) \(= - 1\)
b) \(\cos \left( {\frac{\pi }{2} - \alpha } \right)\sin \left( {\beta + \pi } \right) - \sin \left( {2\pi - \alpha } \right)\cos \left( {\beta - \frac{\pi }{2}} \right)\)
\( \) \(= \sin \alpha .\left( { - \sin \beta } \right) - \sin \left( { - \alpha } \right)\sin \beta \) \(= - \sin \alpha .\sin \beta + \sin \alpha \sin \beta \) \(= 0\)
Bài 7 trang 15 SBT Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số bậc hai. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:
Thông thường, bài tập 7 sẽ yêu cầu học sinh thực hiện các công việc sau:
Để giúp các em học sinh hiểu rõ hơn, chúng ta sẽ cùng nhau giải bài tập này một cách chi tiết. Giả sử bài tập có dạng:
Cho hàm số y = x2 - 4x + 3. Hãy xác định tập xác định, tập giá trị, tọa độ đỉnh, trục đối xứng và vẽ đồ thị của hàm số.
Hàm số y = x2 - 4x + 3 là một hàm số bậc hai, tập xác định của hàm số là tập hợp tất cả các số thực, tức là D = ℝ.
Tọa độ đỉnh của parabol y = ax2 + bx + c được tính theo công thức:
Trong trường hợp này, a = 1, b = -4, c = 3. Do đó:
Vậy tọa độ đỉnh của parabol là (2; -1).
Trục đối xứng của parabol là đường thẳng có phương trình x = xđỉnh, tức là x = 2.
Dựa vào các thông tin đã tính toán, ta có thể vẽ đồ thị của hàm số y = x2 - 4x + 3. Đồ thị là một parabol có đỉnh tại (2; -1), trục đối xứng x = 2, đi qua các điểm (0; 3), (1; 0) và (3; 0).
Hy vọng với lời giải chi tiết này, các em học sinh sẽ tự tin hơn khi giải bài 7 trang 15 SBT Toán 11 Chân trời sáng tạo tập 1 và các bài tập tương tự. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập