Tusach.vn cung cấp lời giải chi tiết, dễ hiểu bài 3 trang 158 SBT Toán 11 Chân trời sáng tạo tập 1. Bài viết này giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải toán và chuẩn bị tốt cho các bài kiểm tra.
Chúng tôi luôn cập nhật lời giải mới nhất và chính xác nhất, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.
Thâm niên công tác của các công nhân hai nhà máy A và B. a) Hãy so sánh thâm niên công tác của nhân viên hai nhà máy theo số trung bình và trung vị. b) Hãy ước lượng tứ phân vị thứ nhất và thứ ba của hai mẫu số liệu ghép nhóm trên.
Đề bài
Thâm niên công tác của các công nhân hai nhà máy A và B.

a) Hãy so sánh thâm niên công tác của nhân viên hai nhà máy theo số trung bình và trung vị.
b) Hãy ước lượng tứ phân vị thứ nhất và thứ ba của hai mẫu số liệu ghép nhóm trên.
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:
Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).
b) + Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:
Gọi n là cỡ mẫu.
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,
\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).
+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:
Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.
Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)
Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)
Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:
Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)
Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)
Lời giải chi tiết
a) Bảng tần số ghép nhóm bao gồm giá trị đại diện là:

Trung bình số năm thâm niên của công nhân nhà máy A là:
\(\overline {{x_A}} = \frac{{2,5.35 + 7,5.13 + 12,5.12 + 17,5.12 + 22,5.8}}{{35 + 13 + 12 + 12 + 8}} = 9,0625\) (năm)
Trung bình số năm thâm niên của công nhân nhà máy B là:
\(\overline {{x_B}} = \frac{{2,5.14 + 7,5.26 + 12,5.24 + 17,5.11 + 22,5.5}}{{14 + 26 + 24 + 11 + 5}} = 10,4375\) (năm)
Vậy nếu so sánh theo số trung bình (năm) thì thâm niên công tác của nhân viên công ty A ngắn hơn thâm niên công tác của nhân viên công ty B.
Nhà máy A:
Cỡ mẫu \(n = 80\)
Gọi \({x_1},{x_2},...,{x_{80}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_{35}} \in \left[ {0;5} \right),{x_{36}},...,{x_{48}} \in \left[ {5;10} \right),{x_{49}},...,{x_{60}} \in \left[ {10;15} \right),\)
\({x_{61}},...,{x_{72}} \in \left[ {15;20} \right),{x_{73}},...,{x_{80}} \in \left[ {20;25} \right)\).
Do cỡ mẫu \(n = 80\) nên trung vị của mẫu số liệu là \(\frac{1}{2}\left( {{x_{40}} + {x_{41}}} \right)\). Do đó trung vị của mẫu số liệu thuộc nhóm \(\left[ {5;10} \right)\).
Trung vị của mẫu số liệu ghép nhóm là: \({M_e}\left( A \right) = 5 + \frac{{\frac{{80}}{2} - 35}}{{13}}.\left( {10 - 5} \right) = \frac{{90}}{{13}}\)
Nhà máy B:
Cỡ mẫu \(n = 80\)
Gọi \({x_1},{x_2},...,{x_{80}}\) là mẫu số liệu được xếp theo thứ tự không giảm.
Ta có: \({x_1},...,{x_{14}} \in \left[ {0;5} \right),{x_{15}},...,{x_{40}} \in \left[ {5;10} \right),{x_{41}},...,{x_{64}} \in \left[ {10;15} \right),\)
\({x_{65}},...,{x_{75}} \in \left[ {15;20} \right),{x_{76}},...,{x_{80}} \in \left[ {20;25} \right)\)
Do cỡ mẫu \(n = 80\) nên trung vị của mẫu số liệu là \(\frac{1}{2}\left( {{x_{40}} + {x_{41}}} \right)\). Do \({x_{40}} \in \left[ {5;10} \right),{x_{41}} \in \left[ {10;15} \right)\) nên ta có trung vị là \({M_e}\left( B \right) = 10\)
Vì \(\frac{{90}}{{13}} < 10\) nên nếu so sánh theo trung vị thì thâm niên công tác của nhân viên công ty A ngắn hơn thâm niên công tác của nhân viên công ty B.
b) Nhà máy A:
Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{20}} + {x_{21}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {0;5} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1}\left( A \right) = 0 + \frac{{\frac{{80}}{4} - 0}}{{35}}.\left( {5 - 0} \right) = \frac{{20}}{7}\)
Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{60}} + {x_{61}}} \right)\). Do \({x_{60}} \in \left[ {10;15} \right),{x_{61}} \in \left[ {15;20} \right)\) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là \({Q_3}\left( A \right) = 15\).
Nhà máy B:
Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{20}} + {x_{21}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {5;10} \right)\).
Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}\left( B \right) = 5 + \frac{{\frac{{80}}{4} - 14}}{{26}}.\left( {10 - 5} \right) = \frac{{80}}{{13}}\)
Do cỡ mẫu \(n = 80\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{60}} + {x_{61}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {10;15} \right)\) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}\left( B \right) = 10 + \frac{{\frac{{3.80}}{4} - \left( {14 + 26} \right)}}{{24}}.\left( {15 - 10} \right) = \frac{{85}}{6}\)
Bài 3 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm đã học để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho môn Toán mà còn là nền tảng cho các môn học khác như Vật lý, Hóa học, Kinh tế,...
Bài 3 bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 3 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 5x - 2
Lời giải:
f'(x) = d/dx (3x2) + d/dx (5x) - d/dx (2)
f'(x) = 6x + 5 - 0
f'(x) = 6x + 5
Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) + cos(x)
Lời giải:
g'(x) = d/dx (sin(x)) + d/dx (cos(x))
g'(x) = cos(x) - sin(x)
Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1)2
Lời giải:
h'(x) = 2(x2 + 1) * d/dx (x2 + 1)
h'(x) = 2(x2 + 1) * 2x
h'(x) = 4x(x2 + 1)
Để giải nhanh các bài tập về đạo hàm, bạn nên:
Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và các mẹo giải nhanh trên, bạn đã hiểu rõ cách giải bài 3 trang 158 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập