1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 162 Sách bài tập Toán 11 Chân trời sáng tạo tập 1

Tusach.vn cung cấp lời giải chi tiết và dễ hiểu cho bài 5 trang 162 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các bài kiểm tra.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả nhất cho học sinh. Hãy cùng Tusach.vn khám phá lời giải bài 5 này ngay nhé!

Kết quả điều tra về số giờ làm thêm trong một tuần của 100 sinh viên được cho ở biểu đồ bên.

Đề bài

Kết quả điều tra về số giờ làm thêm trong một tuần của 100 sinh viên được cho ở biểu đồ bên.

Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Hãy ước lượng số trung bình, mốt và các tứ phân vị của mẫu số liệu đó.

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1 2

+ Sử dụng kiến thức về số trung bình của mẫu số liệu để tính:

Giả sử mẫu số được cho dưới dạng bảng tần số ghép nhóm:

Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1 3

Số trung bình của mẫu số liệu ghép nhóm, kí hiệu \(\overline x \), được tính như sau: \(\overline x = \frac{{{n_1}{c_1} + {n_2}{c_2} + ... + {n_k}{c_k}}}{n}\), trong đó \(n = {n_1} + {n_2} + ... + {n_k}\).

+ Sử dụng kiến thức về mốt của mẫu số liệu để tính: Giả sử nhóm chứa mốt là \(\left[ {{u_m};{u_{m + 1}}} \right)\), khi đó mốt của mẫu số liệu ghép nhóm, kí hiệu là \({M_O}\) được xác định bởi công thức: \({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

+ Sử dụng kiến thức xác định trung vị của mẫu số liệu ghép nhóm để tính:

Gọi n là cỡ mẫu.

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa trung vị, \({n_m}\) là tần số của nhóm chứa trung vị,

\(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

Khi đó, trung vị của mẫu số liệu là: \({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\).

+ Sử dụng kiến thức về xác định tứ phân vị của mẫu số liệu ghép nhóm để tính:

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm, kí hiệu \({Q_2}\), cũng chính là trung vị của mẫu số liệu ghép nhóm.

Để tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm, kí hiệu \({Q_1}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_m};{u_{m + 1}}} \right)\) chứa tứ phân vị thứ nhất, \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ nhất, \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\)

Khi đó, tứ phân vị thứ nhất của mẫu số liệu là: \({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right)\)

Để tìm tứ phân vị thứ ba của mẫu số liệu ghép nhóm, kí hiệu \({Q_3}\), ta làm như sau:

Giả sử nhóm \(\left[ {{u_j};{u_{j + 1}}} \right)\) chứa tứ phân vị thứ ba, \({n_j}\) là tần số của nhóm chứa tứ phân vị thứ ba, \(C = {n_1} + {n_2} + ... + {n_{j - 1}}\)

Khi đó, tứ phân vị thứ ba của mẫu số liệu là: \({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right)\)

Lời giải chi tiết

Ta có bảng tần số ghép nhóm gồm các giá trị đại diện của nhóm là:

Giải bài 5 trang 162 sách bài tập toán 11 - Chân trời sáng tạo tập 1 4

Cỡ mẫu \(n = 100\)

Số trung bình của mẫu số liệu là: \(\overline x = \frac{{12.3 + 20.5 + 37.7 + 21.9 + 11.10}}{{100}} = 6,94\)

Nhóm chứa mốt của mẫu số liệu là \(\left[ {6;8} \right)\).

Do đó, \({u_m} = 6,{u_{m + 1}} = 8,{n_m} = 37,{n_{m + 1}} = 20,{u_{m + 1}} - {u_m} = 8 - 6 = 2\)

Mốt của mẫu số liệu là: \({M_O} = 6 + \frac{{37 - 20}}{{\left( {37 - 20} \right) + \left( {37 - 21} \right)}}.2 = \frac{{232}}{{33}}\)

Gọi \({x_1},{x_2},...,{x_{100}}\) là mẫu số liệu được xếp theo thứ tự không giảm.

Ta có: \({x_1},...,{x_{12}} \in \left[ {2;4} \right),{x_{13}},...,{x_{32}} \in \left[ {4;6} \right),{x_{33}},...,{x_{69}} \in \left[ {6;8} \right),\) \({x_{70}},...,{x_{90}} \in \left[ {8;10} \right),{x_{90}},...,{x_{100}} \in \left[ {10;12} \right)\).

Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ hai của mẫu số liệu là \(\frac{1}{2}\left( {{x_{50}} + {x_{51}}} \right)\). Do đó tứ phân vị thứ hai của mẫu số liệu thuộc nhóm \(\left[ {6;8} \right)\).

Tứ phân vị thứ hai của mẫu số liệu ghép nhóm là:\({Q_2} = 6 + \frac{{\frac{{100}}{2} - \left( {12 + 20} \right)}}{{37}}.\left( {8 - 6} \right) = \frac{{258}}{{37}}\)

Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ nhất của mẫu số liệu là \(\frac{1}{2}\left( {{x_{25}} + {x_{26}}} \right)\). Do đó tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \(\left[ {4;6} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 4 + \frac{{\frac{{100}}{4} - 12}}{{20}}.\left( {6 - 4} \right) = 5,3\)

Do cỡ mẫu \(n = 100\) nên tứ phân vị thứ ba của mẫu số liệu là \(\frac{1}{2}\left( {{x_{75}} + {x_{76}}} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \(\left[ {8;10} \right)\).

Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 8 + \frac{{\frac{{3.100}}{4} - \left( {12 + 20 + 37} \right)}}{{21}}.\left( {10 - 8} \right) = \frac{{60}}{7}\)

Giải bài 5 trang 162 Sách bài tập Toán 11 Chân trời sáng tạo tập 1: Tổng quan

Bài 5 trang 162 sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm số đa thức, hàm số lượng giác, và hàm số hợp. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho môn Toán mà còn là nền tảng cho các môn học khác như Vật lý, Hóa học.

Nội dung chi tiết bài 5 trang 162

Bài 5 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu học sinh tính đạo hàm của một hàm số cho trước, sử dụng các quy tắc đạo hàm đã học.
  • Tìm đạo hàm cấp hai: Tính đạo hàm bậc hai của hàm số, đòi hỏi học sinh phải hiểu rõ về đạo hàm và quy tắc tính đạo hàm.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm vận tốc, gia tốc, hoặc xác định điểm cực trị của hàm số.

Lời giải chi tiết bài 5 trang 162

Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 5 trang 162 sách bài tập Toán 11 Chân trời sáng tạo tập 1:

Câu a)

Hàm số: y = 3x2 - 5x + 2

Lời giải:

y' = 6x - 5

Câu b)

Hàm số: y = sin(2x)

Lời giải:

y' = 2cos(2x)

Câu c)

Hàm số: y = x3 + cos(x)

Lời giải:

y' = 3x2 - sin(x)

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm một cách hiệu quả, bạn nên:

  1. Nắm vững các quy tắc đạo hàm cơ bản: Đạo hàm của hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit.
  2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  3. Sử dụng các công cụ hỗ trợ: Máy tính bỏ túi có chức năng tính đạo hàm, hoặc các phần mềm giải toán trực tuyến.
  4. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tại sao nên chọn Tusach.vn để học Toán 11?

Tusach.vn là một website học tập trực tuyến uy tín, cung cấp đầy đủ các tài liệu học tập cho môn Toán 11, bao gồm:

  • Giải bài tập sách giáo khoa và sách bài tập: Giải chi tiết, dễ hiểu, có đáp án và lời giải.
  • Bài giảng video: Giúp bạn hiểu rõ hơn về các khái niệm và công thức.
  • Bài kiểm tra trực tuyến: Giúp bạn tự đánh giá kiến thức và kỹ năng của mình.
  • Diễn đàn trao đổi: Nơi bạn có thể đặt câu hỏi và trao đổi với các bạn học sinh khác và giáo viên.

Hãy truy cập Tusach.vn ngay hôm nay để khám phá những tài liệu học tập hữu ích và nâng cao kết quả học tập của bạn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN