1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 2 trang 51 SBT Toán 11 Chân trời sáng tạo tập 2

Chào mừng bạn đến với lời giải chi tiết bài 2 trang 51 sách bài tập Toán 11 Chân trời sáng tạo tập 2 trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hỗ trợ tối đa cho quá trình học tập của bạn.

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \(SA = a\sqrt 3 ,SA \bot AC,\) \(SA \bot BC,\) \(\widehat {BAD} = {120^0}\).

Đề bài

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \(SA = a\sqrt 3 ,SA \bot AC,\) \(SA \bot BC,\) \(\widehat {BAD} = {120^0}\). Gọi M, N lần lượt là trung điểm của AD, BC. Tính góc giữa các cặp đường thẳng:

a) SD và BC.

b) MN và SC.

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

Sử dụng kiến thức về góc giữa hai đường thẳng trong không gian để tính: Góc giữa hai đường thẳng a, b trong không gian, kí hiệu (a, b), là góc giữa hai đường thẳng \(a'\) và \(b'\) cùng đi qua một điểm và lần lượt song song hoặc trùng với a và b.

Góc giữa hai đường thẳng nhận giá trị từ \({0^0}\) đến \({90^0}\).

Lời giải chi tiết

Giải bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2 2

a) Vì ABCD là hình thoi nên AD//BC. Do đó, \(\left( {SD,BC} \right) = \left( {SD,AD} \right) = \widehat {SDA}\)

Vì \(SA \bot BC,\) AD//BC nên \(SA \bot AD\). Do đó, tam giác SAD vuông tại A.

Do đó, \(\tan \widehat {SDA} = \frac{{SA}}{{AD}} = \frac{{a\sqrt 3 }}{a} = \sqrt 3 \Rightarrow \widehat {SDA} = {60^0}\)

b) Vì M, N lần lượt là trung điểm của AD, BC nên MN//CD

Do đó, \(\left( {MN,SC} \right) = \left( {CD,SC} \right) = \widehat {SCD}\)

Áp dụng định lí Pythagore vào tam giác SAD vuông tại A có: \(SD = \sqrt {S{A^2} + A{D^2}} = \sqrt {3{a^2} + {a^2}} = 2a\)

Vì ABCD là hình thoi nên \(AD = DC\). Do đó, tam giác ACD cân tại D

Vì ABCD là hình thoi nên AC là tia phân giác góc BAD. Do đó, \(\widehat {DAC} = \frac{1}{2}\widehat {BAD} = {60^0}\)

Suy ra, tam giác ACD đều nên \(AC = a\)

Áp dụng định lí Pythagore vào tam giác SAC vuông tại A có: \(SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {3{a^2} + {a^2}} = 2a\)

Áp dụng định lý cosin vào tam giác SCD có:

\(\cos \widehat {SCD} = \frac{{S{C^2} + C{D^2} - S{D^2}}}{{2.SC.CD}} = \frac{{{{\left( {2a} \right)}^2} + {a^2} - {{\left( {2a} \right)}^2}}}{{2.2a.a}} = \frac{1}{4} \Rightarrow \widehat {SCD} \approx 75,{5^0}\)

Giải bài 2 trang 51 SBT Toán 11 Chân trời sáng tạo tập 2: Tổng quan và Phương pháp giải

Bài 2 trang 51 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.

Nội dung chi tiết bài 2 trang 51 SBT Toán 11 Chân trời sáng tạo tập 2

Bài 2 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước tại một điểm hoặc trên một khoảng xác định.
  • Tìm đạo hàm cấp hai: Tính đạo hàm bậc hai của hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến: Xác định phương trình tiếp tuyến của đồ thị hàm số tại một điểm cho trước.
  • Khảo sát hàm số: Sử dụng đạo hàm để xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.

Lời giải chi tiết bài 2 trang 51 SBT Toán 11 Chân trời sáng tạo tập 2

Dưới đây là lời giải chi tiết cho từng phần của bài 2 trang 51 SBT Toán 11 Chân trời sáng tạo tập 2:

Câu a)

Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1

Lời giải:

f'(x) = 3x2 - 4x + 5

Câu b)

Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1)(x - 3)

Lời giải:

g'(x) = (2x)(x - 3) + (x2 + 1)(1) = 2x2 - 6x + x2 + 1 = 3x2 - 6x + 1

Câu c)

Đề bài: Tính đạo hàm của hàm số h(x) = sin(2x + 1)

Lời giải:

h'(x) = cos(2x + 1) * 2 = 2cos(2x + 1)

Mẹo giải bài tập Đạo hàm hiệu quả

  1. Nắm vững định nghĩa đạo hàm: Hiểu rõ ý nghĩa của đạo hàm là tốc độ thay đổi tức thời của hàm số.
  2. Thành thạo các quy tắc tính đạo hàm: Học thuộc và áp dụng đúng các quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  3. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  4. Sử dụng công cụ hỗ trợ: Các công cụ tính đạo hàm trực tuyến có thể giúp bạn kiểm tra lại kết quả và hiểu rõ hơn về quá trình tính toán.

Tại sao nên chọn tusach.vn để học Toán 11?

tusach.vn là địa chỉ tin cậy cho học sinh, sinh viên và những người yêu thích môn Toán. Chúng tôi cung cấp:

  • Lời giải chi tiết, dễ hiểu: Các bài giải được trình bày rõ ràng, logic, giúp bạn nắm vững kiến thức.
  • Đội ngũ giáo viên giàu kinh nghiệm: Đảm bảo chất lượng và độ chính xác của nội dung.
  • Cập nhật liên tục: Nội dung được cập nhật thường xuyên, đáp ứng nhu cầu học tập của bạn.
  • Giao diện thân thiện, dễ sử dụng: Mang đến trải nghiệm học tập tốt nhất.

Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN