Chào mừng bạn đến với lời giải chi tiết bài 8 trang 15 sách bài tập Toán 11 Chân trời sáng tạo tập 1 trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hỗ trợ tối đa cho quá trình học tập của bạn.
Tính giá trị của các biểu thức sau: a) \(\sin {17^0}\sin {197^0} + \sin {73^0}\cos {163^0}\); b) \(\frac{1}{{1 - \tan {{145}^0}}} + \frac{1}{{1 + \tan {{55}^0}}}\).
Đề bài
Tính giá trị của các biểu thức sau:
a) \(\sin {17^0}\sin {197^0} + \sin {73^0}\cos {163^0}\);
b) \(\frac{1}{{1 - \tan {{145}^0}}} + \frac{1}{{1 + \tan {{55}^0}}}\).
Phương pháp giải - Xem chi tiết
a) + Sử dụng kiến thức về giá trị lượng giác của các góc lượng giác có liên quan đặc biệt: \(\sin \left( {\alpha + \pi } \right) = - \sin \alpha \), \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \), \(\cos \left( {\pi - \alpha } \right) = - \cos \alpha \)
+ Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).
b) \(\tan \left( {\pi - \alpha } \right) = - \tan \alpha \), \(\tan \left( {\frac{\pi }{2} - \alpha } \right) = \cot \alpha \)
+ Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc:\(\cot \alpha = \frac{1}{{\tan \alpha }}\).
Lời giải chi tiết
a) \(\sin {17^0}\sin {197^0} + \sin {73^0}\cos {163^0}\)
\( \) \( = \sin {17^0}\sin \left( {{{180}^0} + {{17}^0}} \right) + \sin \left( {{{90}^0} - {{17}^0}} \right)\cos \left( {{{180}^0} - {{17}^0}} \right)\)
\( \) \( = \sin {17^0}\left( { - \sin {{17}^0}} \right) + \cos {17^0}\left( { - \cos {{17}^0}} \right)\)
\( \) \( = - \left[ {{{\sin }^2}{{17}^0} + {{\cos }^2}{{17}^0}} \right] \) \( = - 1\)
b) \(\frac{1}{{1 - \tan {{145}^0}}} + \frac{1}{{1 + \tan {{55}^0}}} \) \( = \frac{1}{{1 - \tan \left( {{{180}^0} - {{35}^0}} \right)}} + \frac{1}{{1 + \tan \left( {{{90}^0} - {{35}^0}} \right)}}\)
\( \) \( = \frac{1}{{1 + \tan {{35}^0}}} + \frac{1}{{1 + \cot {{35}^0}}} \) \( = \frac{1}{{1 + \tan {{35}^0}}} + \frac{1}{{1 + \frac{1}{{\tan {{35}^0}}}}} \) \( = \frac{{1 + \tan {{35}^0}}}{{1 + \tan {{35}^0}}} \) \( = 1\)
Bài 8 trang 15 SBT Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về Hàm số lượng giác. Bài tập này tập trung vào việc vận dụng các kiến thức về định nghĩa, tính chất của hàm số lượng giác, và các phép biến đổi lượng giác cơ bản để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài 8 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 8 trang 15 SBT Toán 11 Chân trời sáng tạo tập 1:
Đề bài: ... (giả sử đề bài là: Xác định tập xác định của hàm số y = tan(2x - π/3))
Lời giải:
Hàm số y = tan(2x - π/3) xác định khi và chỉ khi 2x - π/3 ≠ π/2 + kπ, với k là số nguyên.
Suy ra 2x ≠ 5π/6 + kπ
Vậy x ≠ 5π/12 + kπ/2, với k là số nguyên.
Kết luận: Tập xác định của hàm số là D = R \ {5π/12 + kπ/2, k ∈ Z}.
Đề bài: ... (giả sử đề bài là: Tìm tập giá trị của hàm số y = 2sin(x + π/4))
Lời giải:
Vì -1 ≤ sin(x + π/4) ≤ 1 nên -2 ≤ 2sin(x + π/4) ≤ 2.
Kết luận: Tập giá trị của hàm số là [-2; 2].
Để giải tốt các bài tập về hàm số lượng giác, bạn nên:
Tusach.vn luôn cập nhật lời giải chi tiết, chính xác cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 11 Chân trời sáng tạo tập 1. Hãy truy cập tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập của bạn!
Chúc bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập