1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2

Giải bài 4 trang 43 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác nhất cho bài tập 4 trang 43 sách bài tập Toán 11 Chân trời sáng tạo tập 2. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.

Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết bài toán này một cách hiệu quả.

Tính đạo hàm của các hàm số sau:

Đề bài

Tính đạo hàm của các hàm số sau:

a) \(y = \frac{x}{{\sin x - \cos x}}\);

b) \(y = \frac{{\sin x}}{x}\);

c) \(y = \sin x - \frac{1}{3}{\sin ^3}x;\)

d) \(y = \cos \left( {2\sin x} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2 1

+ Sử dụng kiến thức về đạo hàm của hàm hợp: Cho hàm số \(u = g\left( x \right)\) có đạo hàm tại x là \(u_x'\) và hàm số \(y = f\left( u \right)\) có đạo hàm tại u là \(y_u'\) thì hàm hợp \(y = f\left( {g\left( x \right)} \right)\) có đạo hàm tại x là \(y_x' = y_u'.u_x'\).

+ Sử dụng kiến thức về đạo hàm của hàm số để tính:

a) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(\left( {\cos x} \right)' = - \sin x\), \(x' = 1\)

b) \({\left( {\frac{u}{v}} \right)'} = \frac{{u'v - uv'}}{{{v^2}}}\left( {v = v\left( x \right) \ne 0} \right)\), \(\left( {\sin x} \right)' = \cos x\), \(x' = 1\)

c) \(\left( {u - v} \right)' = u' - v'\), \({\left[ {u\left( x \right)} \right]^\alpha } = \alpha {\left[ {u\left( x \right)} \right]^\alpha }\left[ {u\left( x \right)} \right]'\)

d) \(\left( {\sin u\left( x \right)} \right)' = \left( {u\left( x \right)} \right)'\cos u\left( x \right)\), \(\left( {\cos u\left( x \right)} \right)' = - \left( {u\left( x \right)} \right)'\sin u\left( x \right)\)

Lời giải chi tiết

a) \(y' \) \( = {\left( {\frac{x}{{\sin x - \cos x}}} \right)'} \) \( = \frac{{x'\left( {\sin x - \cos x} \right) - x\left( {\sin x - \cos x} \right)'}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)

\( \) \( = \frac{{\sin x - \cos x - x\left( {\cos x + \sin x} \right)}}{{{{\left( {\sin x - \cos x} \right)}^2}}}\)

b) \(y' \) \( = {\left( {\frac{{\sin x}}{x}} \right)'} \) \( = \frac{{\left( {\sin x} \right)'x - x'\sin x}}{{{x^2}}} \) \( = \frac{{x\cos x - \sin x}}{{{x^2}}}\);

c) \(y' \) \( = {\left( {\sin x - \frac{1}{3}{{\sin }^3}x} \right)'} \) \( = \cos x - \frac{1}{3}.3{\sin ^2}x\left( {\sin x} \right)' \) \( = \cos x - {\sin ^2}x\cos x\)

\( \) \( = \cos x\left( {1 - {{\sin }^2}x} \right) \) \( = {\cos ^3}x\);

d) \(y' \) \( = \left[ {\cos \left( {2\sin x} \right)} \right]' \) \( = - \left( {2\sin x} \right)'.\sin \left( {2\sin x} \right) \) \( = - 2\cos x.\sin \left( {2\sin x} \right)\).

Giải bài 4 trang 43 Sách bài tập Toán 11 - Chân trời sáng tạo tập 2: Tổng quan và Phương pháp giải

Bài 4 trang 43 sách bài tập Toán 11 Chân trời sáng tạo tập 2 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm (đạo hàm của tổng, hiệu, tích, thương, hàm hợp) và đạo hàm của một số hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit) để giải quyết các bài toán cụ thể.

Nội dung bài tập 4 trang 43

Thông thường, bài tập 4 trang 43 sẽ bao gồm các dạng bài sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước tại một điểm hoặc trên một khoảng xác định.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm vận tốc, gia tốc, hoặc xác định khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết bài 4 trang 43

Để giải bài 4 trang 43 sách bài tập Toán 11 Chân trời sáng tạo tập 2, bạn cần thực hiện theo các bước sau:

  1. Xác định hàm số cần tính đạo hàm.
  2. Chọn quy tắc tính đạo hàm phù hợp. (Ví dụ: quy tắc đạo hàm của tổng, quy tắc đạo hàm của tích, quy tắc đạo hàm của hàm hợp,...)
  3. Áp dụng quy tắc đã chọn để tính đạo hàm.
  4. Rút gọn kết quả.

Ví dụ minh họa

Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x2 + 2x - 1. Ta thực hiện như sau:

f'(x) = (x2)' + (2x)' - (1)' = 2x + 2 - 0 = 2x + 2

Mẹo giải nhanh

  • Nắm vững các công thức đạo hàm cơ bản: Việc thuộc lòng các công thức đạo hàm cơ bản sẽ giúp bạn tiết kiệm thời gian và tránh sai sót.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài và rèn luyện kỹ năng giải toán.
  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán nhanh chóng và chính xác.

Các bài tập tương tự

Để củng cố kiến thức, bạn có thể tham khảo các bài tập tương tự sau:

  • Bài 1 trang 43 Sách bài tập Toán 11 Chân trời sáng tạo tập 2
  • Bài 2 trang 43 Sách bài tập Toán 11 Chân trời sáng tạo tập 2
  • Bài 3 trang 43 Sách bài tập Toán 11 Chân trời sáng tạo tập 2

Kết luận

Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 4 trang 43 sách bài tập Toán 11 Chân trời sáng tạo tập 2 một cách hiệu quả. Chúc bạn học tập tốt!

Công thứcMô tả
(xn)'nxn-1
(sin x)'cos x
(cos x)'-sin x
Bảng công thức đạo hàm cơ bản

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN