1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 4 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 4 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 4 trang 94 SBT Toán 11 Chân trời sáng tạo tập 1

Chào mừng các em học sinh đến với lời giải chi tiết bài 4 trang 94 sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em hiểu sâu kiến thức và tự tin làm bài tập.

tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Cho \(a > b > 0\) và \(\lim \frac{{{a^{n + 1}} + {b^n}}}{{2{a^n} + {b^{n + 1}}}} = 1\). Tìm giá trị của a.

Đề bài

Cho \(a > b > 0\) và \(\lim \frac{{{a^{n + 1}} + {b^n}}}{{2{a^n} + {b^{n + 1}}}} = 1\). Tìm giá trị của a.

Phương pháp giải - Xem chi tiếtGiải bài 4 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).

+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)

Lời giải chi tiết

Vì \(a > b > 0 \Rightarrow 0 < \frac{b}{a} < 1 \Rightarrow \lim {\left( {\frac{b}{a}} \right)^n} = 0\)

Ta có: \(\lim \frac{{{a^{n + 1}} + {b^n}}}{{2{a^n} + {b^{n + 1}}}} = \lim \frac{{1 + \frac{1}{a}{{\left( {\frac{b}{a}} \right)}^n}}}{{\frac{2}{a} + {{\left( {\frac{b}{a}} \right)}^{n + 1}}}} = \frac{{1 + \lim \left[ {\frac{1}{a}{{\left( {\frac{b}{a}} \right)}^n}} \right]}}{{\frac{2}{a} + \lim {{\left( {\frac{b}{a}} \right)}^{n + 1}}}} = \frac{a}{2}\)

Mà \(\lim \frac{{{a^{n + 1}} + {b^n}}}{{2{a^n} + {b^{n + 1}}}} = 1\) nên \(\frac{a}{2} = 1 \Rightarrow a = 2\)

Giải bài 4 trang 94 SBT Toán 11 Chân trời sáng tạo tập 1: Tổng quan

Bài 4 trang 94 SBT Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về Đạo hàm của hàm số. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về định nghĩa đạo hàm, các quy tắc tính đạo hàm (đạo hàm của tổng, hiệu, tích, thương, hàm hợp) và đạo hàm của một số hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit) để giải quyết các bài toán cụ thể.

Nội dung bài tập

Thông thường, bài 4 trang 94 SBT Toán 11 Chân trời sáng tạo tập 1 sẽ bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước tại một điểm hoặc trên một khoảng xác định.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến: Tìm phương trình tiếp tuyến của đồ thị hàm số tại một điểm cho trước.
  • Ứng dụng đạo hàm để giải các bài toán về cực trị: Tìm cực đại, cực tiểu của hàm số.

Hướng dẫn giải chi tiết

Để giải quyết bài 4 trang 94 SBT Toán 11 Chân trời sáng tạo tập 1 một cách hiệu quả, các em cần:

  1. Nắm vững định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x0 được định nghĩa là giới hạn của tỷ số \frac{f(x) - f(x_0)}{x - x_0}\ khi x tiến tới x0.
  2. Thành thạo các quy tắc tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để đơn giản hóa việc tính đạo hàm của các hàm số phức tạp.
  3. Biết đạo hàm của các hàm số cơ bản: Nắm vững đạo hàm của các hàm số thường gặp như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit.
  4. Luyện tập thường xuyên: Giải nhiều bài tập tương tự để rèn luyện kỹ năng và làm quen với các dạng bài tập khác nhau.

Ví dụ minh họa

Bài toán: Tính đạo hàm của hàm số f(x) = x^2 + 3x - 2

Giải:

Áp dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số mũ, ta có:

f'(x) = 2x + 3

Lưu ý quan trọng

Khi giải bài tập về đạo hàm, các em cần chú ý:

  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Sử dụng đúng các quy tắc tính đạo hàm.
  • Rút gọn biểu thức đạo hàm một cách cẩn thận.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo

Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:

  • Sách giáo khoa Toán 11
  • Các trang web học Toán trực tuyến
  • Các video bài giảng về đạo hàm

Kết luận

Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh đã có thể tự tin giải quyết bài 4 trang 94 SBT Toán 11 Chân trời sáng tạo tập 1. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN