1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Giải bài 5 trang 31 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 11 Chân trời sáng tạo tập 1. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 5 trang 31, từ đó nâng cao khả năng giải toán của mình.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể tự tin làm bài tập.

Tìm các nghiệm của mỗi phương trình sau trong khoảng \(\left( { - \pi ;\pi } \right)\). a) \(\sin \left( {3x - \frac{\pi }{3}} \right) = 1\);

Đề bài

Tìm các nghiệm của mỗi phương trình sau trong khoảng \(\left( { - \pi ;\pi } \right)\).

a) \(\sin \left( {3x - \frac{\pi }{3}} \right) = 1\);

b) \(2\cos \left( {2x - \frac{{3\pi }}{4}} \right) = \sqrt 3 \);

c) \(\tan \left( {x + \frac{\pi }{9}} \right) = \tan \frac{{4\pi }}{9}\).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 31 sách bài tập toán 11 - Chân trời sáng tạo tập 1 1

Sử dụng kiến thức về phương trình lượng giác cơ bản để giải:

a) Phương trình \(\sin x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = \pi - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho \(\sin \alpha = m\).

Đặc biệt: \(\sin u = \sin v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = \pi - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

b) Phương trình \(\cos x = m\) có nghiệm khi \(\left| m \right| \le 1\). Khi đó, nghiệm của phương trình là \(x = \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\); \(x = - \alpha + k2\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left[ {0;\pi } \right]\) sao cho \(\cos \alpha = m\).

Đặc biệt: \(\cos u = \cos v \) \( \Leftrightarrow u = v + k2\pi \left( {k \in \mathbb{Z}} \right)\) hoặc \(u = - v + k2\pi \left( {k \in \mathbb{Z}} \right)\)

c) Với mọi số thực m, phương trình \(\tan x = m\) có nghiệm \(x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\) với \(\alpha \) là góc thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho \(\tan \alpha = m\).

Lời giải chi tiết

a) \(\sin \left( {3x - \frac{\pi }{3}} \right) = 1 \) \( \Leftrightarrow 3x - \frac{\pi }{3} = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}\left( {k \in \mathbb{Z}} \right)\)

Vì \(x \in \left( { - \pi ;\pi } \right) \Rightarrow - \pi < \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3} < \pi \) \( \Leftrightarrow \frac{{ - 23}}{{12}} < k < \frac{{13}}{{12}}\)

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0;1} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 7\pi }}{{18}};\frac{{5\pi }}{{18}};\frac{{17\pi }}{{18}}} \right\}\).

b) \(2\cos \left( {2x - \frac{{3\pi }}{4}} \right) = \sqrt 3 \) \( \Leftrightarrow \cos \left( {2x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2} \) \( \Leftrightarrow \cos \left( {2x - \frac{{3\pi }}{4}} \right) = \cos \frac{\pi }{6}\)

\( \Leftrightarrow \left[ \begin{array}{l}2x - \frac{{3\pi }}{4} = \frac{\pi }{6} + k2\pi \\2x - \frac{{3\pi }}{4} = - \frac{\pi }{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{11\pi }}{{24}} + k\pi \\x = \frac{{7\pi }}{{24}} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì \(x \in \left( { - \pi ;\pi } \right)\) nên:

TH1: \( - \pi < \frac{{11\pi }}{{24}} + k\pi < \pi \) \( \Leftrightarrow \frac{{ - 35}}{{24}} < k < \frac{{13}}{{24}}\).

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 13\pi }}{{24}};\frac{{11\pi }}{{24}}} \right\}\).

TH2: \( - \pi < \frac{{7\pi }}{{24}} + k\pi < \pi \) \( \Leftrightarrow \frac{{ - 31}}{{24}} < k < \frac{{17}}{{24}}\).

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 17\pi }}{{24}};\frac{{7\pi }}{{24}}} \right\}\).

Vậy \(x \in \left\{ {\frac{{ - 17\pi }}{{24}};\frac{{ - 13\pi }}{{24}};\frac{{7\pi }}{{24}};\frac{{11\pi }}{{24}}} \right\}\).

c) \(\tan \left( {x + \frac{\pi }{9}} \right) = \tan \frac{{4\pi }}{9} \) \( \Leftrightarrow x + \frac{\pi }{9} = \frac{{4\pi }}{9} + k\pi \left( {k \in \mathbb{Z}} \right) \) \( \Leftrightarrow x = \frac{\pi }{3} + k\pi \left( {k \in \mathbb{Z}} \right)\).

Vì \(x \in \left( { - \pi ;\pi } \right) \Rightarrow - \pi < \frac{\pi }{3} + k\pi < \pi \) \( \Leftrightarrow \frac{{ - 4}}{3} < k < \frac{2}{3}\)

Mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ { - 1;0} \right\}\). Do đó, \(x \in \left\{ {\frac{{ - 2\pi }}{3};\frac{\pi }{3}} \right\}\).

Giải bài 5 trang 31 Sách bài tập Toán 11 - Chân trời sáng tạo tập 1: Tổng quan

Bài 5 trang 31 Sách bài tập Toán 11 Chân trời sáng tạo tập 1 thuộc chương trình học về hàm số lượng giác. Bài tập này thường tập trung vào việc xác định tập xác định của hàm số lượng giác, tìm giá trị của hàm số tại một điểm cụ thể, và vẽ đồ thị hàm số. Việc nắm vững kiến thức về lượng giác và các phép biến đổi lượng giác là rất quan trọng để giải quyết bài tập này.

Nội dung bài tập 5 trang 31

Bài tập 5 thường bao gồm các dạng câu hỏi sau:

  • Xác định tập xác định của hàm số: Yêu cầu tìm ra tất cả các giá trị của x mà hàm số có nghĩa.
  • Tính giá trị của hàm số: Yêu cầu tính giá trị của hàm số tại một giá trị x cho trước.
  • Vẽ đồ thị hàm số: Yêu cầu vẽ đồ thị của hàm số dựa trên các điểm đã tính toán.
  • Tìm các yếu tố của hàm số: Tìm chu kỳ, biên độ, pha, và các điểm đặc biệt của đồ thị hàm số.

Lời giải chi tiết bài 5 trang 31

Để giải bài 5 trang 31 một cách hiệu quả, bạn cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ định nghĩa, tính chất, và công thức của các hàm số lượng giác.
  2. Phân tích đề bài: Xác định rõ yêu cầu của bài tập và các thông tin đã cho.
  3. Áp dụng công thức và phương pháp phù hợp: Sử dụng các công thức và phương pháp đã học để giải quyết bài tập.
  4. Kiểm tra lại kết quả: Đảm bảo rằng kết quả của bạn là chính xác và hợp lý.

Ví dụ minh họa:

Giả sử bài tập yêu cầu tìm tập xác định của hàm số y = tan(2x). Để giải bài tập này, bạn cần nhớ rằng hàm số tan(x) không xác định khi x = (π/2) + kπ, với k là số nguyên. Do đó, tập xác định của hàm số y = tan(2x) là:

2x ≠ (π/2) + kπ

x ≠ (π/4) + (kπ/2), với k là số nguyên.

Mẹo giải bài tập hàm số lượng giác

  • Sử dụng máy tính bỏ túi: Máy tính bỏ túi có thể giúp bạn tính toán các giá trị lượng giác một cách nhanh chóng và chính xác.
  • Vẽ đồ thị hàm số: Vẽ đồ thị hàm số có thể giúp bạn hiểu rõ hơn về tính chất của hàm số và tìm ra các nghiệm của phương trình.
  • Luyện tập thường xuyên: Luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và kỹ năng giải bài tập.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học toán trực tuyến: Ví dụ như Khan Academy, VietJack, Loigiaihay.
  • Các video hướng dẫn giải bài tập: Có rất nhiều video hướng dẫn giải bài tập toán 11 trên YouTube.
  • Các diễn đàn học tập: Tham gia các diễn đàn học tập để trao đổi kiến thức và kinh nghiệm với các bạn học khác.

Kết luận

Bài 5 trang 31 Sách bài tập Toán 11 Chân trời sáng tạo tập 1 là một bài tập quan trọng giúp bạn củng cố kiến thức về hàm số lượng giác. Hy vọng rằng với những hướng dẫn chi tiết và các mẹo giải bài tập trên, bạn sẽ có thể giải quyết bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN