Chào mừng bạn đến với lời giải chi tiết bài 93 trang 41 sách bài tập Toán 12 Cánh Diều. Tusach.vn cung cấp đáp án chính xác, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập Toán 12.
Chúng tôi luôn cập nhật nhanh chóng và đầy đủ các bài giải SBT Toán 12 Cánh Diều, đáp ứng nhu cầu học tập của học sinh.
Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x.ln {rm{x}}) trên đoạn (left[ {1;{e^2}} right]) bằng: A. (M = 0,m = - frac{1}{e}). B. (M = frac{1}{e},m = 0). C. (M = 2{{rm{e}}^2},m = 0). D. (M = 2{{rm{e}}^2},m = - frac{1}{e}).
Đề bài
Giá trị lớn nhất \(M\) và giá trị nhỏ nhất \(m\) của hàm số \(y = x.\ln {\rm{x}}\) trên đoạn \(\left[ {1;{e^2}} \right]\) bằng:
A. \(M = 0,m = - \frac{1}{e}\)
B. \(M = \frac{1}{e},m = 0\)
C. \(M = 2{{\rm{e}}^2},m = 0\)
D. \(M = 2{{\rm{e}}^2},m = - \frac{1}{e}\)
Phương pháp giải - Xem chi tiết
Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):
Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).
Bước 3. So sánh các giá trị tìm được ở Bước 2.
Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).
Lời giải chi tiết
Ta có: \(y' = {\left( x \right)^\prime }.\ln {\rm{x}} + x.{\left( {\ln x} \right)^\prime } = \ln {\rm{x}} + x.\frac{1}{x} = \ln {\rm{x}} + 1\)
Khi đó, trên đoạn \(\left[ {1;{e^2}} \right]\), \(y' = 0\) vô nghiệm.
\(y\left( 1 \right) = 0;y\left( {{e^2}} \right) = 2{{\rm{e}}^2}\).
Vậy \(M = \mathop {\max }\limits_{\left[ {1;{e^2}} \right]} y = 2{{\rm{e}}^2}\) tại \(x = {e^2}\); \(m = \mathop {\min }\limits_{\left[ {1;{e^2}} \right]} y = 0\) tại \(x = 1\).
Chọn C.
Bài 93 trang 41 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và Mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ vị trí giữa đường thẳng và mặt phẳng.
Bài 93 thường bao gồm các dạng bài tập sau:
Bài toán: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Chứng minh rằng đường thẳng d cắt mặt phẳng (P) và tìm tọa độ giao điểm.
Lời giải:
Thay phương trình tham số của đường thẳng d vào phương trình mặt phẳng (P), ta được:
2(1 + t) - (2 - t) + (3 + 2t) - 5 = 0
2 + 2t - 2 + t + 3 + 2t - 5 = 0
5t - 2 = 0
t = 2/5
Vì t = 2/5 là một giá trị cụ thể, nên đường thẳng d cắt mặt phẳng (P). Thay t = 2/5 vào phương trình tham số của đường thẳng d, ta được:
x = 1 + 2/5 = 7/5
y = 2 - 2/5 = 8/5
z = 3 + 2(2/5) = 19/5
Vậy tọa độ giao điểm của đường thẳng d và mặt phẳng (P) là (7/5, 8/5, 19/5).
Tusach.vn tự hào là một trong những website cung cấp tài liệu học tập Toán 12 uy tín và chất lượng nhất. Chúng tôi luôn cập nhật nhanh chóng và đầy đủ các bài giải SBT Toán 12 Cánh Diều, đáp án đề thi, kiến thức trọng tâm và các bài tập luyện tập. Hãy truy cập tusach.vn để học tập và ôn luyện Toán 12 hiệu quả!
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập về đường thẳng và mặt phẳng trong không gian, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Cánh Diều và các tài liệu tham khảo khác.
| Bài tập | Trang |
|---|---|
| Bài 94 | 41 |
| Bài 95 | 42 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập