1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 12 SBT Toán 12 Cánh Diều

Tusach.vn xin giới thiệu lời giải chi tiết bài 11 trang 12 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác đáp án các bài tập trong sách bài tập Toán 12 Cánh Diều.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {{x^2} - 1} \right)^2}\left( {x - 2} \right),\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là: A. 1. B. 2. C. 3. D. 4.

Đề bài

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {{x^2} - 1} \right)^2}\left( {x - 2} \right),\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là:

A. 1. B. 2. C. 3. D. 4.

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 12 sách bài tập toán 12 - Cánh diều 1

Các bước để tìm điểm cực trị của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định của hàm số \(f\left( x \right)\).

Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.

Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các điểm cực trị của hàm số.

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\).

Ta có: \(y' = 0\) khi \(x = 0;x = - 1;x = 1\) hoặc \(x = 2\).

Bảng xét dấu đạo hàm của hàm số:

Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều 2

Dựa vào bảng xét dấu đạo hàm ta có: Hàm số đạt cực tiểu tại \(x = 2\).

Vậy hàm số có 1 điểm cực trị.

Chọn A.

Giải bài 11 trang 12 SBT Toán 12 Cánh Diều: Tổng quan và Phương pháp giải

Bài 11 trang 12 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:

  • Đạo hàm của hàm số tại một điểm.
  • Đạo hàm của các hàm số cơ bản (hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit).
  • Các quy tắc tính đạo hàm (quy tắc cộng, trừ, nhân, chia, hàm hợp).
  • Ứng dụng của đạo hàm để tìm cực trị của hàm số.

Nội dung chi tiết bài 11 trang 12 SBT Toán 12 Cánh Diều

Bài 11 thường bao gồm các dạng bài tập sau:

  1. Tính đạo hàm của hàm số.
  2. Tìm đạo hàm cấp hai của hàm số.
  3. Xác định các điểm cực trị của hàm số.
  4. Khảo sát sự biến thiên của hàm số.
  5. Giải các bài toán thực tế liên quan đến đạo hàm.

Lời giải chi tiết bài 11 trang 12 SBT Toán 12 Cánh Diều

Dưới đây là lời giải chi tiết cho từng phần của bài 11 trang 12 sách bài tập Toán 12 Cánh Diều:

Ví dụ minh họa (Giả định bài tập cụ thể):

Bài tập: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Tính đạo hàm bậc nhất: y' = 3x2 - 6x
  2. Tìm các điểm làm đạo hàm bậc nhất bằng 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Tính đạo hàm bậc hai: y'' = 6x - 6
  4. Kiểm tra dấu của đạo hàm bậc hai tại các điểm cực trị:
    • Tại x = 0: y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Giá trị cực đại là y = 2.
    • Tại x = 2: y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y = -2.

Vậy hàm số đạt cực đại tại điểm (0; 2) và cực tiểu tại điểm (2; -2).

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập trong sách giáo khoa và sách bài tập Toán 12 Cánh Diều. Chúng tôi cam kết mang đến cho bạn trải nghiệm học tập tốt nhất. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!

ChươngBàiLiên kết
11Giải bài 1 trang 12 SBT Toán 12
12Giải bài 2 trang 12 SBT Toán 12

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN