Tusach.vn xin giới thiệu lời giải chi tiết bài tập 12 trang 48 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác đáp án các bài tập trong sách bài tập Toán 12 Cánh Diều.
Cho ba điểm (Aleft( {3; - 4;2} right),Bleft( {1;2;3} right),Cleft( {0;1;5} right)). Lập phương trình mặt phẳng (left( P right)) đi qua điểm (A) và vuông góc với đường thẳng (BC).
Đề bài
Cho ba điểm \(A\left( {3; - 4;2} \right),B\left( {1;2;3} \right),C\left( {0;1;5} \right)\). Lập phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(A\) và vuông góc với đường thẳng \(BC\).
Phương pháp giải - Xem chi tiết
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm vectơ pháp tuyến có phương trình tổng quát là: \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).
Lời giải chi tiết
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow {BC} = \left( { - 1; - 1;2} \right)\).
Phương trình mặt phẳng \(\left( P \right)\) là:
\( - 1\left( {x - 3} \right) - 1\left( {y + 4} \right) + 2\left( {z - 2} \right) = 0 \Leftrightarrow - x - y + 2z - 5 = 0\).
Bài 12 trang 48 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý đã học để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, góc giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng thực tế.
Bài 12 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 12 trang 48 sách bài tập Toán 12 Cánh Diều:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).
Cho điểm A(1; 2; 3) và mặt phẳng (P): 2x - y + z - 1 = 0. Tính khoảng cách từ điểm A đến mặt phẳng (P).
Khoảng cách d từ điểm A(x₀; y₀; z₀) đến mặt phẳng (P): Ax + By + Cz + D = 0 được tính theo công thức:
d = |Ax₀ + By₀ + Cz₀ + D| / √(A² + B² + C²)
Trong trường hợp này, A = 2, B = -1, C = 1, D = -1, x₀ = 1, y₀ = 2, z₀ = 3.
d = |2(1) - 1(2) + 1(3) - 1| / √(2² + (-1)² + 1²) = |2 - 2 + 3 - 1| / √6 = 2/√6 = √6/3.
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác các bài tập trong sách giáo khoa và sách bài tập Toán 12 Cánh Diều. Chúng tôi cam kết mang đến cho bạn những tài liệu học tập chất lượng, giúp bạn học tập hiệu quả và đạt kết quả cao trong kỳ thi.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập