1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 7 trang 61 sách bài tập toán 12 - Cánh diều

Giải bài 7 trang 61 sách bài tập toán 12 - Cánh diều

Giải bài 7 trang 61 SBT Toán 12 Cánh Diều

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 7 trang 61 một cách dễ hiểu nhất.

Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hình chóp (S.ABC) có (SA = SB = SC = AB = AC = a) và (BC = asqrt 2 ) (Hình 9). a) Tam giác (ABC) vuông tại (A) và tam giác (SAB) đều. b) (overrightarrow {AB} .overrightarrow {AC} = 0) và (left( {overrightarrow {SA} ,overrightarrow {AB} } right) = {120^ circ }). c) (overrightarrow {SC} .overrightarrow {AB} = frac{{{a^2}}}{2}). d) (cos left( {overrightarrow {SC} ,overrightarrow {AB} } r

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hình chóp \(S.ABC\) có \(SA = SB = SC = AB = AC = a\) và \(BC = a\sqrt 2 \) (Hình 9).

a) Tam giác \(ABC\) vuông tại \(A\) và tam giác \(SAB\) đều.

b) \(\overrightarrow {AB} .\overrightarrow {AC} = 0\) và \(\left( {\overrightarrow {SA} ,\overrightarrow {AB} } \right) = {120^ \circ }\).

c) \(\overrightarrow {SC} .\overrightarrow {AB} = \frac{{{a^2}}}{2}\).

d) \(\cos \left( {\overrightarrow {SC} ,\overrightarrow {AB} } \right) = \frac{1}{2}\).

Giải bài 7 trang 61 sách bài tập toán 12 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 61 sách bài tập toán 12 - Cánh diều 2

‒ Sử dụng tích vô hướng của hai vectơ: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Lời giải chi tiết

Xét tam giác \(ABC\) có: \(A{B^2} + A{C^2} = 2{a^2} = B{C^2}\). Vậy tam giác \(ABC\) vuông tại \(A\).

Xét tam giác \(SAB\) có: \(SA = SB = AB = a\). Vậy tam giác \(SAB\) đều.

Vậy a) đúng.

Tam giác \(ABC\) vuông tại \(A\) nên \(AB \bot AC \Leftrightarrow \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = {90^ \circ }\). Vậy \(\overrightarrow {AB} .\overrightarrow {AC} = 0\).

\(\overrightarrow {SA} .\overrightarrow {AB} = - \overrightarrow {AS} .\overrightarrow {AB} = - \left| {\overrightarrow {AS} } \right|.\left| {\overrightarrow {AB} } \right|.\cos \left( {\overrightarrow {AS} ,\overrightarrow {AB} } \right) = - a.a.\cos {60^ \circ } = - \frac{{{a^2}}}{2}\)

\(\cos \left( {\overrightarrow {SA} ,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SA} .\overrightarrow {AB} }}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{{{a^2}}}{2}}}{{a.a}} = - \frac{1}{2} \Rightarrow \left( {\overrightarrow {SA} ,\overrightarrow {AB} } \right) = {120^ \circ }\).

Vậy b) đúng.

\(\overrightarrow {SC} .\overrightarrow {AB} = \left( {\overrightarrow {SA} + \overrightarrow {AC} } \right).\overrightarrow {AB} = \overrightarrow {SA} .\overrightarrow {AB} + \overrightarrow {AC} .\overrightarrow {AB} = - \frac{{{a^2}}}{2} + 0 = - \frac{{{a^2}}}{2}\). Vậy c) sai.

\(\cos \left( {\overrightarrow {SC} ,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC} .\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right|.\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{{{a^2}}}{2}}}{{a.a}} = - \frac{1}{2}\). Vậy d) sai.

a) Đ

b) Đ

c) S

d) S

Giải bài 7 trang 61 SBT Toán 12 Cánh Diều: Tổng quan

Bài 7 trang 61 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các quy tắc đạo hàm cơ bản là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung chi tiết bài 7 trang 61 SBT Toán 12 Cánh Diều

Bài 7 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số đơn giản. Học sinh cần áp dụng các công thức đạo hàm cơ bản để tính đạo hàm của các hàm số đơn giản như đa thức, hàm lượng giác, hàm mũ, hàm logarit.
  • Dạng 2: Tính đạo hàm của hàm số phức tạp. Học sinh cần sử dụng các quy tắc đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để tính đạo hàm của các hàm số phức tạp.
  • Dạng 3: Tìm đạo hàm cấp hai. Học sinh cần tính đạo hàm cấp một trước, sau đó tính đạo hàm của đạo hàm cấp một để tìm đạo hàm cấp hai.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số. Học sinh cần tìm hệ số góc của tiếp tuyến tại một điểm cho trước, sau đó viết phương trình tiếp tuyến.

Lời giải chi tiết bài 7 trang 61 SBT Toán 12 Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài 7 trang 61 SBT Toán 12 Cánh Diều, chúng tôi sẽ cung cấp lời giải chi tiết cho từng câu hỏi. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi của bài 7, ví dụ:)

Ví dụ: Giải câu a) bài 7 trang 61 SBT Toán 12 Cánh Diều

Câu a) yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.

Lời giải:

f'(x) = 3x2 + 4x - 5

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các quy tắc đạo hàm một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập Toán 12 Cánh Diều, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Các trang web học toán trực tuyến
  • Các video hướng dẫn giải bài tập toán 12

Kết luận

Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách giải bài 7 trang 61 SBT Toán 12 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn. Chúng tôi luôn sẵn sàng hỗ trợ bạn.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN