Tusach.vn xin giới thiệu đáp án chi tiết bài 41 trang 77 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.
Cho hình lập phương (ABCD.A'B'C'D') có cạnh bằng (a). Tính: a) (overrightarrow {A'B} .overrightarrow {B'C'} ); b) (overrightarrow {D'A} .overrightarrow {BA'} ).
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Tính:
a) \(\overrightarrow {A'B} .\overrightarrow {B'C'} \);
b) \(\overrightarrow {D'A} .\overrightarrow {BA'} \).
Phương pháp giải - Xem chi tiết
Sử dụng tích vô hướng của hai vectơ: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).
Lời giải chi tiết

a) Ta có: \(B'C' \bot \left( {ABB'A'} \right) \Rightarrow B'C' \bot A'B\).
\( \Rightarrow \left( {\overrightarrow {A'B} ,\overrightarrow {B'C'} } \right) = {90^ \circ } \Rightarrow \overrightarrow {A'B} .\overrightarrow {B'C'} = 0\)
b) Ta có:
\(\overrightarrow {D'A} .\overrightarrow {BA'} = - \overrightarrow {D'A} .\overrightarrow {A'B} = - \left| {\overrightarrow {D'A} } \right|.\left| {\overrightarrow {A'B} } \right|.\cos \left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right) = - AD'.A'B.\cos \left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right)\)
\(\overrightarrow {A'B} = \overrightarrow {D'C} \Rightarrow \left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right) = \left( {\overrightarrow {D'A} ,\overrightarrow {D'C} } \right) = \widehat {A{\rm{D}}'C}\).
Xét tam giác \(AC{\rm{D}}'\) có \(AC,AD',CD'\) đều là các đường chéo của các hình vuông là các mặt của hình lập phương.
Do đó \(AC = AD' = CD'\). Vậy tam giác \(AC{\rm{D}}'\) đều.
Suy ra \(\left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right) = \widehat {A{\rm{D}}'C} = {60^ \circ }\).
\(\overrightarrow {D'A} .\overrightarrow {BA'} = - a.a.\cos {60^ \circ } = - \frac{{{a^2}}}{2}\).
Bài 41 trang 77 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, Tusach.vn xin trình bày đáp án chi tiết như sau:
Đề bài: Cho đường thẳng d và mặt phẳng (P). Xác định vị trí tương đối giữa d và (P).
Giải: Để xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P), ta cần tìm giao điểm của d và (P). Nếu d và (P) có một điểm chung, thì d cắt (P). Nếu d và (P) không có điểm chung, thì d song song với (P). Để tìm giao điểm, ta giải hệ phương trình gồm phương trình đường thẳng d và phương trình mặt phẳng (P)....
Đề bài: Tính góc giữa đường thẳng d và mặt phẳng (P).
Giải: Góc giữa đường thẳng d và mặt phẳng (P) là góc giữa đường thẳng d và hình chiếu của nó trên mặt phẳng (P). Để tính góc này, ta sử dụng công thức: sin(α) = d(A, (P)) / AD, trong đó A là một điểm bất kỳ trên đường thẳng d, d(A, (P)) là khoảng cách từ A đến mặt phẳng (P), và AD là độ dài đoạn thẳng AD...
Để giải tốt các bài tập về đường thẳng và mặt phẳng trong không gian, các em cần nắm vững các kiến thức cơ bản sau:
Tusach.vn là website chuyên cung cấp đáp án và lời giải chi tiết các bài tập trong sách giáo khoa và sách bài tập Toán 12. Chúng tôi cam kết cung cấp nội dung chính xác, dễ hiểu và cập nhật nhanh chóng. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất trong quá trình học tập!
| Chương | Bài | Trang |
|---|---|---|
| Đường thẳng và mặt phẳng trong không gian | 41 | 77 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập