Tusach.vn cung cấp lời giải chi tiết và dễ hiểu bài 24 trang 57 sách bài tập Toán 12 Cánh Diều. Bài giải được các giáo viên có kinh nghiệm biên soạn, đảm bảo tính chính xác và giúp học sinh hiểu rõ phương pháp giải.
Chúng tôi luôn cập nhật nhanh chóng và đầy đủ đáp án các bài tập trong sách bài tập Toán 12 Cánh Diều, hỗ trợ tối đa cho quá trình học tập của bạn.
Đường thẳng đi qua điểm (Bleft( {5; - 2;9} right)) nhận (overrightarrow u = left( { - 17;2; - 11} right)) làm vectơ chỉ phương có phương trình chính tắc là: A. (frac{{x + 5}}{{ - 17}} = frac{{y - 2}}{2} = frac{{z + 9}}{{ - 11}}). B. (frac{{x - 17}}{5} = frac{{y + 2}}{{ - 2}} = frac{{z - 11}}{9}). C. (frac{{x - 5}}{{ - 17}} = frac{{y + 2}}{2} = frac{{z - 9}}{{ - 11}}). D. (frac{{x + 17}}{5} = frac{{y - 2}}{{ - 2}} = frac{{z + 11}}{9}).
Đề bài
Đường thẳng đi qua điểm \(B\left( {5; - 2;9} \right)\) nhận \(\overrightarrow u = \left( { - 17;2; - 11} \right)\) làm vectơ chỉ phương có phương trình chính tắc là:
A. \(\frac{{x + 5}}{{ - 17}} = \frac{{y - 2}}{2} = \frac{{z + 9}}{{ - 11}}\).
B. \(\frac{{x - 17}}{5} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 11}}{9}\).
C. \(\frac{{x - 5}}{{ - 17}} = \frac{{y + 2}}{2} = \frac{{z - 9}}{{ - 11}}\).
D. \(\frac{{x + 17}}{5} = \frac{{y - 2}}{{ - 2}} = \frac{{z + 11}}{9}\).
Phương pháp giải - Xem chi tiết
Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\).
Lời giải chi tiết
Đường thẳng đi qua điểm \(B\left( {5; - 2;9} \right)\) nhận \(\overrightarrow u = \left( { - 17;2; - 11} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - 5}}{{ - 17}} = \frac{{y + 2}}{2} = \frac{{z - 9}}{{ - 11}}\).
Chọn C.
Bài 24 trang 57 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường tập trung vào việc vận dụng kiến thức về vị trí tương đối giữa đường thẳng và mặt phẳng, góc giữa đường thẳng và mặt phẳng, và các bài toán liên quan đến khoảng cách.
Bài 24 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ xem xét một ví dụ cụ thể. Giả sử bài toán yêu cầu xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).
Để giải nhanh các bài tập về đường thẳng và mặt phẳng, bạn nên:
Tusach.vn tự hào là website cung cấp tài liệu học tập Toán 12 uy tín và chất lượng. Chúng tôi cam kết mang đến cho bạn những lời giải chi tiết, dễ hiểu và cập nhật nhanh chóng nhất. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác và cùng chúng tôi chinh phục môn Toán!
| Chương | Bài | Link |
|---|---|---|
| Đường thẳng và mặt phẳng trong không gian | Bài 23 | Link bài 23 |
| Đường thẳng và mặt phẳng trong không gian | Bài 25 | Link bài 25 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập