Tusach.vn xin giới thiệu lời giải chi tiết bài 20 trang 14 sách bài tập Toán 12 Cánh Diều. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Cánh Diều, đáp ứng nhu cầu học tập của học sinh.
Tìm điểm cực trị của mỗi hàm số sau: a) \(y = {x^3} - 12{\rm{x}} + 8\); b) \(y = 2{{\rm{x}}^4} - 4{{\rm{x}}^2} - 1\); c) \(y = \frac{{{x^2} - 2{\rm{x}} - 2}}{{x + 1}}\); d) \(y = - x + 1 - \frac{9}{{x - 2}}\)
Đề bài
Tìm điểm cực trị của mỗi hàm số sau:
a) \(y = {x^3} - 12{\rm{x}} + 8\); b) \(y = 2{{\rm{x}}^4} - 4{{\rm{x}}^2} - 1\);
c) \(y = \frac{{{x^2} - 2{\rm{x}} - 2}}{{x + 1}}\); d) \(y = - x + 1 - \frac{9}{{x - 2}}\)
Phương pháp giải - Xem chi tiết
Các bước để tìm điểm cực trị của hàm số \(f\left( x \right)\):
Bước 1. Tìm tập xác định của hàm số \(f\left( x \right)\).
Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.
Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các điểm cực trị của hàm số.
Lời giải chi tiết
a) Hàm số có tập xác định là \(\mathbb{R}\).
Ta có: \({y^\prime } = 3{{\rm{x}}^2} - 12\); \(y' = 0\) khi \(x = - 2,x = 2\).
Bảng biến thiên của hàm số:

Vậy hàm số đạt cực tiểu tại \(x = 2\) và đạt cực đại tại \(x = - 2\).
b) Hàm số có tập xác định là \(\mathbb{R}\).
Ta có: \({y^\prime } = 8{{\rm{x}}^3} - 8{\rm{x}}\)
\(y' = 0\) khi \(x = 0,x = - 1,x = 1\).
Bảng biến thiên của hàm số:

Vậy hàm số đạt cực tiểu tại \(x = - 1\) và \(x = 1\), đạt cực đại tại \(x = 0\).
c) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có:
\(\begin{array}{l}{y^\prime } = \frac{{{{\left( {{x^2} - 2x - 2} \right)}^\prime }.\left( {x + 1} \right) - \left( {{x^2} - 2x - 2} \right).{{\left( {x + 1} \right)}^\prime }}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{\left( {2{\rm{x}} - 2} \right)\left( {x + 1} \right) - \left( {{x^2} - 2x - 2} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\ & = \frac{{{x^2} + 2{\rm{x}}}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{x\left( {{\rm{x}} + 2} \right)}}{{{{\left( {x + 1} \right)}^2}}}\end{array}\)
\(y' = 0\) khi \(x = 0,x = - 2\).
Bảng biến thiên của hàm số:

Vậy hàm số đạt cực tiểu tại \(x = 0\) và đạt cực đại tại \(x = - 2\).
d) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có:
\({y^\prime } = - 1 + \frac{9}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - {x^2} + 4{\rm{x}} - 4 + 9}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{ - {x^2} + 4{\rm{x}} + 5}}{{{{\left( {x - 2} \right)}^2}}}\)
\(y' = 0\) khi \(x = 5,x = - 1\).
Bảng biến thiên của hàm số:

Vậy hàm số đạt cực tiểu tại \(x = - 1\) và đạt cực đại tại \(x = 5\).
Bài 20 trang 14 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ vị trí giữa đường thẳng và mặt phẳng.
Bài 20 thường bao gồm các dạng bài tập sau:
Để giải quyết các bài tập trong bài 20 trang 14 SBT Toán 12 Cánh Diều một cách hiệu quả, học sinh cần nắm vững các kiến thức sau:
Ví dụ: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).
Giải:
Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).
Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 5 ≠ 0. Do đó, đường thẳng d và mặt phẳng (P) cắt nhau.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 12 Cánh Diều. Chúng tôi hy vọng rằng với sự hỗ trợ của Tusach.vn, các bạn học sinh sẽ học tập hiệu quả và đạt kết quả tốt trong môn Toán.
| Bài tập | Lời giải |
|---|---|
| Bài 1 | Xem lời giải |
| Bài 2 | Xem lời giải |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập