1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 14 trang 9 sách bài tập toán 12 - Cánh diều

Giải bài 14 trang 9 sách bài tập toán 12 - Cánh diều

Giải bài 14 trang 9 SBT Toán 12 Cánh Diều

Chào mừng các em học sinh đến với lời giải chi tiết bài 14 trang 9 sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.

Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = 4{x^3} + 3{{\rm{x}}^2}\), biết \(F\left( 1 \right) - f'\left( 1 \right) = - 16\).

Đề bài

Tìm nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = 4{x^3} + 3{{\rm{x}}^2}\), biết \(F\left( 1 \right) - f'\left( 1 \right) = - 16\).

Phương pháp giải - Xem chi tiếtGiải bài 14 trang 9 sách bài tập toán 12 - Cánh diều 1

‒ Sử dụng tính chất của nguyên hàm: Cho hàm số \(y = f\left( x \right),y = g\left( x \right)\) liên tục trên \(K\).

• \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \) với \(k\) là hằng số khác 0.

• \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} + \int {g\left( x \right)dx} \).

• \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} - \int {g\left( x \right)dx} \).

‒ Sử dụng công thức \(\int {F'\left( x \right)dx} = F\left( x \right) + C\) với \(F\left( x \right)\) là hàm số có đạo hàm liên tục.

Lời giải chi tiết

\(F\left( x \right) = \int {\left( {4{x^3} + 3{{\rm{x}}^2}} \right)dx} = \int {4{x^3}dx} + \int {3{{\rm{x}}^2}dx} = \int {{{\left( {{x^4}} \right)}^\prime }dx} + \int {{{\left( {{x^3}} \right)}^\prime }dx} = {x^4} + {x^3} + C\).

\(f'\left( x \right) = 12{{\rm{x}}^2} + 6{\rm{x}}\)

\(F\left( 1 \right) - f'\left( 1 \right) = - 16 \Leftrightarrow \left( {{1^4} + {1^3} + C} \right) - \left( {{{12.1}^2} + 6.1} \right) = - 16 \Leftrightarrow C = 0\).

Vậy \(F\left( x \right) = {x^4} + {x^3}\).

Giải bài 14 trang 9 SBT Toán 12 Cánh Diều: Tổng quan

Bài 14 trang 9 sách bài tập Toán 12 Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế, rèn luyện kỹ năng tính toán và tư duy logic.

Nội dung chi tiết bài 14 trang 9 SBT Toán 12 Cánh Diều

Bài 14 bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số.
  • Dạng 2: Khảo sát hàm số bằng đạo hàm (xác định khoảng đồng biến, nghịch biến, cực trị).
  • Dạng 3: Giải các bài toán liên quan đến ứng dụng của đạo hàm (tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số).

Lời giải chi tiết bài 14 trang 9 SBT Toán 12 Cánh Diều

Bài 14.1

Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1.

Lời giải:

f'(x) = 3x2 - 4x + 5

Bài 14.2

Đề bài: Khảo sát hàm số y = x3 - 3x2 + 2.

Lời giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm cực trị: Giải phương trình y' = 0, ta được x = 0 và x = 2.
  3. Xác định khoảng đồng biến, nghịch biến:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
  4. Tìm cực đại, cực tiểu:
    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo giải bài tập Toán 12 hiệu quả

Để giải bài tập Toán 12 hiệu quả, các em cần:

  • Nắm vững kiến thức cơ bản về đạo hàm và ứng dụng của đạo hàm.
  • Luyện tập thường xuyên các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi, phần mềm giải toán.
  • Tham khảo các tài liệu học tập, sách tham khảo, bài giảng trực tuyến.

Tại sao nên chọn tusach.vn để học Toán 12?

Tusach.vn là một website học tập uy tín, cung cấp:

  • Lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 12.
  • Đội ngũ giáo viên giàu kinh nghiệm, nhiệt tình hỗ trợ học sinh.
  • Giao diện thân thiện, dễ sử dụng.
  • Cập nhật liên tục các tài liệu học tập mới nhất.

Hãy truy cập tusach.vn ngay hôm nay để học Toán 12 hiệu quả và đạt kết quả cao!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN